

User's Manual

AMD Versal Plus Ryzen Mini-ITX Board VPR-4616-MB

TRADEMARK

All products and company names are trademarks or registered trademarks of their respective holders.

These specifications are subject to change without notice.

Manual Revision 1.0 October 21, 2025

Federal Communications Commission (FCC) Statement

This device has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with instructions contained in this manual, may cause harmful interference to radio and television communications. However, there is no guarantee that interference will not occur in a particular installation.

If this product does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the product into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.
- ♣ Note1: Connecting this device to peripheral devices that do not comply with Class B requirements, or using an unshielded peripheral data cable, could also result in harmful interference to radio or television reception.
- Note2: The user is cautioned that any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this product.
- Note3: To ensure that the use of this product does not contribute to interference, it is necessary to use shielded I/O cables.

CE: Radiation of EN 55022 & Immunity of EN 55024

Waste Electrical and Electronic Equipment (WEEE) Statement

To protect the global environment, this product must be sent to separate collection facilities for recovery and recycling.

DISPOSAL

Do not dispose of this product as unsorted municipal waste. Collect such waste separately for special treatment.

HDMI, the HDMI logo and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing, LLC in the United States and other countries.

Manufacturer

Sapphire Technology Limited
Unit 1909-1919, 19/F., Tower 2 Grand Central Plaza
138 Shatin Rural Committee Road
Shatin, Hong Kong

Table of Contents

Chapter I introduction	I
1-1 Mainboard Specifications	1
1-2 Package Contents	4
1-3 Mainboard Layout	5
1-4 Mainboard Dimension	9
Chapter 2 Installation	
2-1 Installing System Memory	
Memory Configuration	
Memory Installation	11
2-2 Installing Expansion Cards (Additional Purchase)	12
IO Expansion Board Socket	12
Dual Ethernet 1G Card	14
GMSL Card	16
M.2 E-Key Slot Installation	22
M.2 M-Key Slot Installation	23
2-3 Connecting Cables and Jumper Settings	26
Front Panel Header	26
SATA Power Header	28
USB2.0 Header	28
COM Header	29
Case Open Header	29
Speaker Header	29
AMD FPGA JTAG Port (Internal Use Only)	29
AMD APU HDT+ Header (Internal Use Only)	30
VE2302 GPIO1 Header	30
AMD APU HDT Warm Reset Header (Internal Use Only)	
VE2302 GPIO2 Header	30
AMD GPIO Header	31
External USB INPUT Connector (USB2-DEUG)	31
Fan Headers	31
PSLP Power Control Jumper (JP1)	32
PSFP Power Control Jumper (JP2)	32
FUSE Power Control Jumper (JP3)	32
USB Debug Port Selection Jumper of VE2302 (JP4)	33
VE2302 MODE Selection Jumper (JP5)	33
ROM Write Protect mode Jumper (JP6)	34

Versal Power Control Jumper (JP7)	34
Main Power Control Jumper (JP8)	34
Auto Power ON Jumper (JP9)	34
Clear CMOS Jumper (CMOS1)	35
2-4 System LED Status Indicators	36
2-5 Minimum connection required to boot	36
Chapter 3 Configuring the BIOS	37
3-1 Select Boot Device	
3-2 Enter BIOS Setup	37
3-3 Main Menu	39
3-4 Advanced Menu	40
Trusted Computing	40
ACPI Settings	42
SATA Configuration	43
Onboard Devices	43
Hardware Monitor	46
RTC Wake Settings	48
Serial Port Console Redirection	49
CPU Configuration	50
SIO Configuration	51
PCI Subsystem Settings	52
USB Configuration	53
Network Stack Configuration	55
CSM Configuration	56
NVMe Configuration	57
AMD CBS	58
AMD PBS	66
AMD Firmware Version	
3-5 Chipset Menu	67
3-6 Security Menu	69
3-7 Boot Menu	70
3-8 Save & Exit Menu	71
Chapter 4 Firmware and Driver Installation	72
Chapter 5 Chassis Installation	73
Appendix A: BIOS Update	75
Appendix B: Qualified Vendors List	76
Appendix C: Expansion Board & Connector	80
Appendix D: VPR-4616-SYS Default Login	80

Technical Support and Assistance

- Visit the Sapphire Technology website at https://support.sapphiretech.com/ticket-choose.asp?PDtype=EMB&lang=eng to open a support ticket.
- Contact your distributor, sales representative, or Sapphire's customer service center for technical support if you need additional assistance. Please have the following information ready before calling:
 - Product name and serial number
 - Description of your peripheral attachments
 - Description of your software (operating system, version, application software, etc.)
 - Comprehensive description of the problem
 - The exact wording of any error messages

3. Reference links

Xilinx Wiki - AMD Embedded+ Platform - General description of the AMD Embedded+ platform architectures which captures an AMD x86 paired with an AMD Adaptive SoC.

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/3011838141/AMD+Embedd ed+Platforms

AMD Github - Embedded+ HW/PL platform repository.

GitHub - Xilinx/emb plus vitis platforms

Chapter 1 Introduction

1-1 Mainboard Specifications

APU

> AMD® R2314 APU for FP5 package with Zen 2 core

Graphics

- > AMD[®] Radeon series graphics
- Supports two independent displays with DisplayPort and HDMI port
 - **One DisplayPort supports a maximum resolution of 3840x2160@60Hz/144Hz
 * Support for DisplayPort 1.4 version, HDCP 2.3 and HDR
 - One HDMI port supports a maximum resolution of 3840x2160@60Hz/120Hz
 - * Support for HDMI 2.1 version, HDCP 2.3 and HDR

System Memory

- ➤ Two 260-pin DDR4 SDRAM SO-DIMM (ECC/Non ECC) sockets
- ➤ Supports 1.2V DDR4-2133/2400/2666 DIMMs with dual channel architecture
- > Supports 4GB, 8GB, 16GB and 32GB DDR4 SO-DIMMs up to maximum 64GB

Xilinx Subsystem

- ➤ Versal Edge VE2302 in the SFVA784 package
- ➤ LPDDR4 8GB memory
- ➤ Infineon OPTIGA™ TPM SLM 9670 TPM2.0 in PG-VQFN-32-13 package

Expansion Slots

- ➤ One M.2 Slot E-key (PCIe x1 and USB2.0) with 2230 type for Wifi/BT
- One M.2 Slot M-key (PCIe 3.0 x4 and SATA) with 2280/2580 storage type for SSD

USB Ports

- ➤ Three USB 2.0 ports (two at rear panel, one onboard headers), supporting transfer speed up to 480Mbps
- ➤ Two USB3.1 Gen 2 ports at rear panel supporting transfer speed up to 10Gbps

- One USB3.1 Gen 2 Type C port at back panel supporting transfer speed up to 10Gbps
- Supports wake-up from S3 and S4 modes

SATA Port

- One SATA3 port with 6Gb/s data transfer rate
- ➤ Supports AHCI (Advanced Host Controller Interface)

Onboard LAN

> 2.5 Gigabit Ethernet from Realtek® RTL8125BG Gigabit controller

Onboard Audio

➤ High-Definition audio from Realtek ALC888S codec

I/O

- Onboard Fintek F81803U LPC bus I/O controller
- Supports Hardware Monitor for fan speed monitoring, CPU and system temperature

Back Panel I/O Ports

- > 1 x DC-in 12V~19V Jack
- > 1 x DisplayPort
- ➤ 1 x HDMI Port
- 2 x USB2.0 ports (Black)
- > 2 x USB3.1 Gen 2 ports (Blue)
- > 1 x RJ45 2.5 Gigabit LAN port
- ➤ 1 x COM port
- ➤ 1 x USB3.1 Gen 2 Type C Port
- ➤ 1 x Line-Out port
- ➤ 1 x Min-In port

Internal I/O Connectors

- ➤ 1 x DC-in 4-pin 12V~19V Power Connector (PW1)
- > 1 x IO Expansion Board Socket, connect to daughter card (J1)

- ➤ 1 x SATA3 Connectors (S1)
- > 1 x SATA Power Header, 1x4pin 2.50mm pitch (SATA PW)
- ➤ 1 x USB2.0 Headers, 1x4pin 2.54mm pitch (USB2-A, supports 1 USB2.0 port)
- ➤ 1 x Front Panel Header, 2x5pin 2.54mm pitch (CFP1)
- ➤ 1 x Speaker Header, 1x4pin 2.54mm pitch (CSPK)
- ➤ 1 x COM Headers for RS232/422/485, 2x5pin 2.54mm pitch (COM2)
- ➤ 1 x Battery Headers, 1x2pin 1.25mm pitch (BAT)
- ➤ 1 x AMD FPGA JTAG Port, 2x7pin 2.54mm pitch (J2)
- ➤ 1 x AMD APU HDT+ Header, 2x10pin 1.27mm pitch (J5)
- ➤ 1 x VE2302 GPIO1 Header, 1x2pin 2.54mm pitch (J6)
- ➤ 1 x AMD APU HDT Warm Reset Header, 1x2pin 2.54mm pitch (J7)
- ➤ 1 x VE2302 GPIO2 Header, 1x2pin 2.54mm pitch (J8)
- ➤ 1 x AMD GPIO Header, 2x5pin 2.54mm pitch (J9)
- ➤ 1 x Case Open Header, 1x2pin 2.54mm pitch (J12)
- ➤ 1 x CPU Fan Header, 1x4pin 2.54mm pitch (CPUFAN)
- ➤ 1 x SYSTEM Fan Header, 1x3pin 2.54mm pitch (SYSFAN)
- ➤ 1 x PSLP POWER Control Jumper, 1x3pin 2.54mm pitch (JP1)
- ➤ 1 x PSFP POWER Control Jumper, 1x3pin 2.54mm pitch (JP2)
- ➤ 1 x FUSE Power Control Jumper, 1x3pin 2.54mm pitch (JP3)
- ➤ 1 x USB Debug Port Selection Jumper of VE2302, 1x3pin 2.54mm pitch (JP4)
- ➤ 1 x VE2302 MODE Selection, 1x2pin 2.54mm pitch (JP5)
- ➤ 1 x ROM Write Protect mode Jumper, 1x3pin 2.54mm pitch (JP6)
- ➤ 1 x Versal Power Control Jumper, 1x3pin 2.54mm pitch (JP7)
- ➤ 1 x Main Power Control Jumper, 1x3pin 2.54mm pitch (JP8)
- ➤ 1 x Auto Power ON Jumper, 1x3pin 2.54mm pitch (JP9)
- ➤ 1 x Clear CMOS Jumper, 1x3pin 2.54mm pitch (CMOS1)
- > External USB INPUT Connector For VE2302 debug use (USB2-DEUG)

BIOS

- ➤ 64Mb SPI Flash with AMI based BIOS
- ➤ Supports ACPI (Advanced Configuration and Power Interface)

> Onboard jumper to clear the CMOS data

Onboard Button

➤ Onboard VE2302 Reset button

Form Factor

➤ Mini ITX form factor of 170mm×170mm

Operating systems

> Supports RHEL/CentOS 7.9; RHEL 8.2- 8.6; Ubuntu 22.04

Environmental

- ➤ Power Requirement: Power adapter of 12V~19V DC OUT, input voltage tolerance +/- 5%
- ➤ Operating Temperature: 0°C~50°C (32°F~122°F)
- > Storage Temperature: -20°C~80°C (-4°F~176°F)
- ➤ Relative Humidity: 10%~90%

1-2 Package Contents

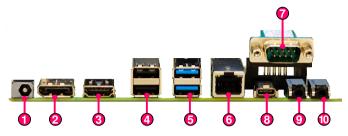
Your mainboard comes with the following items.

Mainboard x1	I/O Shield x1
G acce	

1-3 Mainboard Layout

The following figure shows the location of components on the mainboard. See page 6 for component description.

Note:


Picture is for reference only, actual board may be slightly different.

See next page for details.

Item	Component description	Location
1	AMD FP5 APU	U29
2	AMD VE2302 IC	U15
3	DDR4 SO-DIMM *2	DIMM0/1
4	M.2 M-key for SSD device	M2
5	M.2 E-Key slot for Wifi/BT card	M1
6	4-pin 12V~19V Power Connector	PW1
7	IO Expansion Board Socket	J1
8	SATA3 Connector	S1
9	SATA Power Header, 1x4pin 2.50mm pitch	SATA_PW
10	USB 2.0 Header ^(Note) , 1x4pin 2.54mm pitch	USB2-A
11	External USB INPUT connector for VE2302 debug use	USB2-DEUG
12	COM Header for RS232/422/485 mode, 2x5pin 2.54mm pitch	COM2
13	Front Panel Header, 2x5pin 2.54mm pitch	CFP1
14	Speaker Header, 1x4pin 2.54mm pitch	CSPK
15	AMD FPGA JTAG Port, 2x7pin 2.54mm pitch	J2
16	AMD APU HDT+ Header, 2x10pin 1.27mm pitch	J5
17	VE2302 GPIO1 Header, 1x2pin 2.54mm pitch	J6
18	AMD APU HDT Warm Reset Header, 1x2pin 2.54mm pitch	J7
19	VE2302 GPIO2 Header, 1x2pin 2.54mm pitch	J8
20	AMD GPIO Header, 2x5pin 2.54mm pitch	J9
21	Case Open Header, 1x2pin 2.54mm pitch	J12
22	CPU Fan header, 1x4pin 2.54mm pitch	CPUFAN
23	SYSTEM Fan header, 1x3pin 2.54mm pitch	SYSFAN
24	PSLP POWER Control Jumper, 1x3pin 2.54mm pitch	JP1
25	PSFP POWER Control Jumper, 1x3pin 2.54mm pitch	JP2
26	FUSE Power Control Jumper, 1x3pin 2.54mm pitch	JP3
27	USB Debug Port Selection Jumper of VE2302, 1x3pin 2.54mm pitch	JP4
28	VE2302 MODE Selection, 1x2pin 2.54mm pitch	JP5
29	ROM Write Protect mode Jumper, 1x3pin 2.54mm pitch	JP6
30	Versal Power Control Jumper, 1x3pin 2.54mm pitch	JP7
31	Main Power Control Jumper, 1x3pin 2.54mm pitch	JP8
32	Auto Power ON Jumper, 1x3pin 2.54mm pitch	JP9
33	Clear CMOS jumper, 1x3pin 2.54mm pitch	CMOS1
34	Battery headers, 1x2pin 1.25mm pitch	BAT
35	VE2302 Reset button	SW1
36	BIOS Socket	U24
37	Versal DONE LED	LED6
38	Back Panel Connectors (see next page for detail)	

Note: Each USB 2.0 Header can be used to connect 1 USB device.

I/O Back Panel

Item	Description	Item	Description		
1	DC-IN 12V~19V Jack	6	2.5G bps RJ45 LAN Port		
2	Display Port	7	COM Port (RS232/422/485)		
3	HDMI Port	8	USB3.1 Type C Gen 2 Port		
4	USB2.0 Port *2	9	Line-Out port		
5	USB3.1 Gen 2 Port *2	10	Mic-In port		

Note:

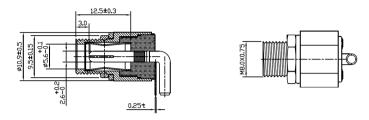
There are two ways to source power to the board: DC-in jack or 4-pin power connector. Two different physical ports that can only be used one at a time.

e.g. When DC-in $12V \sim 19V$ jack is being used, the 4-pin power connector shouldn't be connected to any power source.

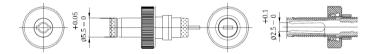
Warning:

One of the power inputs may be damaged when connecting both DC jack and 4-pin power connector at the same time.

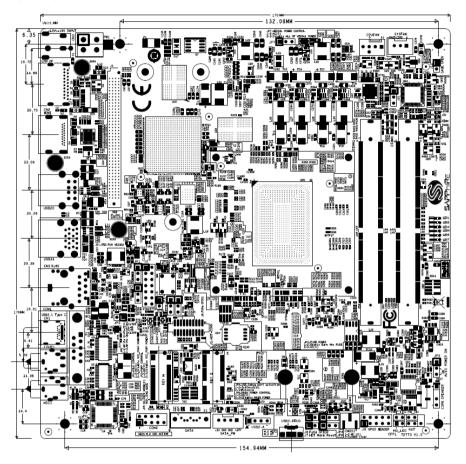
LED indicates of LAN Port


Two LEDs are built into the RJ-45 LAN connector. These LEDs indicate the status of the LAN.

LED	LED Color	LED state	Indicates		
	Off		LAN link is not established		
Α	Green	On	LAN link is established		
		Blinking	LAN activity is occurring		
	N/A	Off	10/100M bps data rate		
В	Green	Green On 1000M bps data ra			
	Yellow	On	2.5G bps data rate		


DC-IN Jack

The DC-IN Jack supports only 12V~19V Input.


Reference DC power adapter:

- Output Power:
 90W Without installed PCIe graphic card
 150W With installed PCIe graphic card
- Output Voltage: 12V~19V

1-4 Mainboard Dimension

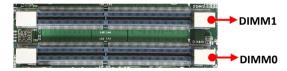
PCB Size: 170 x 170mm

Mainboard with Cooler picture

Chapter 2 Installation

2-1 Installing System Memory

This mainboard has two 260-pin SO-DIMM sockets (ECC/Non ECC) for DDR4 memory.


- Supports 4GB, 8GB, 16GB and 32GB DDR4 SO-DIMMs up to maximum 64GB.
- Supports 1.2V DDR4-2133/2400/2666 DIMMs with dual channel architecture.

Make sure that you install memory modules of the same type and density in different channel DIMM slots for Dual-Channel mode.

Memory Configuration

To use 1 DIMM: Install into either DIMM slot 0 or slot 1.

To use 2 DIMMs: Install into DIMM slot 0 and DIMM slot 1.

Memory Installation

DDR4 and DDR3 memory modules are physically different. Please only install DDR4 DIMMs on this mainboard. To make sure you have the correct DIMM, check that all the notches line up with the DDR4 DIMM slot.

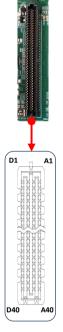
To install the DIMM, follow these steps:

- 1. Pull both clips on either side of the slot outwards. Align the DIMM module with the slot.
- 2. Press modules straight down until the plastic clips close and the module fits tightly into the DIMM slot. Push clips inwards to make sure they are in place.

To remove DIMM from a socket, gently spread the socket's retention arms to disengage them from the DIMM.

Note: To avoid damaging the DIMM, do not touch its contact edge.

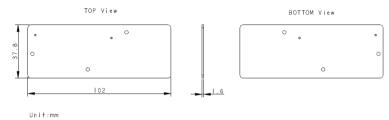
2-2 Installing Expansion Cards (Additional Purchase)

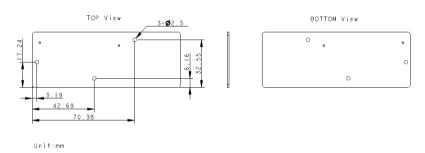

IO Expansion Board Socket

The mainboard provides one IO Expansion Board Socket, can be used to connect to a daughter card, like Dual Ethernet 1G card and GMSL card etc...

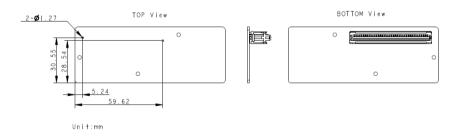
Note: The daughter cards are not included in standard package contecnt. Users may want to purchase the daughter card accroding to their applications.

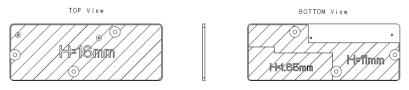
J1: IO Expansion Board Socket (Manufacturer PN: SEAF-40-07.5-L-04-1-A-K-TR)


PIN map between the FPGA and I/O connector on RAVE base board


PIN map between the FPGA and I/O connector on RAVE base board											
Conn. Pin	Definition	FPGA Pin	Conn. Pin	Definition	FPGA Pin	Conn. Pin	Definition	FPGA Pin	Conn. Pin	Definition	FPGA Pin
A1	+3.3V		B1	+3.3V		C1	+3.3V		D1	+3.3V	
A2	VCC_CARD_EN	AD6	B2	GND		C2	LPD_MIO4_GPIO	Y2	D2	GND	
A3	GND		В3	GTYP_CLKP0	H7	C3	GND		D3	GTYP_CLKP1	F7
A4	GND		B4	GTYP_CLKN0	Н6	C4	GND		D4	GTYP_CLKN1	F6
A5	GND		B5	GND		C5	GND		D5	GND	
A6	GTYP_TXP1	D8	В6	GTYP_TXP3	B8	C6	GTYP_TXP2	C5	D6	GTYP_TXP0	E5
A7	GTYP_TXN1	D7	B7	GTYP_TXN3	В7	C7	GTYP_TXN2	C4	D7	GTYP_TXN0	E4
A8	GND		B8	GND		C8	GND		D8	GND	
A9	GTYP_RXP0	F2	В9	GTYP_RXP1	D2	C9	GTYP_RXP2	B2	D9	GTYP_RXP3	A5
A10	GTYP_RXN0	F1	B10	GTYP_RXN1	D1	C10	GTYP_RXN2	B1	D10	GTYP_RXN3	A4
A11	GND		B11	GND		C11	GND		D11	GND	
A12	XPIO_LOP	J27	B12	XPIO_L1P	H27	C12	XPIO_L2P	G27	D12	XPIO_L3P	E27
A13	XPIO_LON	H28	B13	XPIO_L1N	G28	C13	XPIO_L2N	F28	D13	XPIO_L3N	E28
A14	GND		B14	GND		C14	GND		D14	GND	
A15	XPIO_L4P	D27	B15	XPIO_L5P	C27	C15	XPIO_L6P	H25	D15	XPIO_L7P	G25
A16	XPIO_L4N	C28	B16	XPIO_L5N	B28	C16	XPIO_L6N	J26	D16	XPIO_L7N	G26
A17	GND		B17	GND		C17	GND		D17	GND	
A18	XPIO_L8P	F26	B18	XPIO_L9P	C25	C18	XPIO_L10P	A25	D18	XPIO_L11P	B26
A19	XPIO L8N	E26	B19	XPIO L9N	B25	C19	XPIO L10N	A26	D19	XPIO L11N	B27
A20	GND		B20	GND		C20	GND		D20	GND	
A21	XPIO L12P	H23	B21	XPIO L13P	F22	C21	XPIO L14P	E22	D21	XPIO L15P	D24
A22	XPIO_L12N	H24	B22	XPIO_L13N	G23	C22	XPIO_L14N	E23	D22	XPIO_L15N	C24
A23	GND		B23	GND		C23	GND		D23	GND	
A24	XPIO_L16P	C23	B24	XPIO_L17P	A23	C24	XPIO_L18P	G21	D24	XPIO_L19P	E20
A25	XPIO L16N	B23	B25	XPIO L17N	A24	C25	XPIO L18N	H22	D25	XPIO_L19N	F21
A26	GND		B26	GND		C26	GND		D26	GND	
A27	XPIO L20P	D20	B27	XPIO L21P	B20	C27	XPIO L22P	A20	D27	XPIO L23P	C22
A28	XPIO L20N	D21	B28	XPIO L21N	C21	C28	XPIO L22N	A21	D28	XPIO L23N	B22
A29	GND		B29	GND		C29	GND		D29	GND	
A30	XPIO L24P	F23	B30	XPIO L25P	E24	C30	XPIO L26P	D25	D30	VCCO XPIO POWER	
A31	XPIO_L24N	F24	B31	XPIO_L25N	F25	C31	XPIO_L26N	D26	D31	VCCO_XPIO POWER	
A32	GND		B32	GND		C32	GND		D32	GND	
A33	HDIO0	F14	B33	HDIO1	E14	C33	HDIO2	C14	D33	HDIO3	C13
A34	HDIO4	E13	B34	HDIO5	D14	C34	HDIO6	E12	D34	HDIO7	D12
A35	HDIO8	F11	B35	HDIO9	E11	C35	HDIO10	D11	D35	HDIO11	C12
A36	GND		B36	GND		C36	GND		D36	GND	
A37	HDIO12	D10	B37	HDIO13	C10	C37	HDIO14	B10	D37	HDIO15	A10
A38	HDIO16	B11	B38	HDIO17	A11	C38	HDIO18	B12	D38	VCCO_HDIO POWER	t
A39	HDIO19	A13	B39	HDIO20	B13	C39	HDIO21	A14	D39	VCCO HDIO POWER	
A40	GND		B40	GND		C40	GND		D40	GND	
			5.5	1		0.0	1		3	l	

Expansion Board Dimension Specification


• Expansion Board Outline Dimension


Screw Hole Location & Dimension

• Connector Layout Location SEAM-40-11.0-L-04-2-A-K-TR



Component Height Limit

Dual Ethernet 1G Card

Dual Ethernet connector

The RJ45 connector has two indicator LEDs that display the network status:

RJ45 connector	LED Position	Color	Function
Left Right	Left (Link LED)	Green	Lights up when a valid network link is established, indicating a stable connection.
	Right (Activity LED)	Yellow	Lights up when a network link is established and blinks when data is being transmitted or received.

Usage Instructions

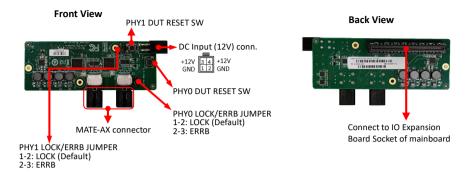
- The left green LED should remain ON when the device is properly connected to the network, indicating a valid link.
- The right yellow LED will blink when there is network activity, indicating data transmission or reception.
- If the green LED is OFF, check the network cable connection or ensure that the connected device is powered on and functioning properly.
- If the yellow LED does not blink, there may be no active network traffic. Try testing the network connection.

These indicator LEDs help users quickly assess network status and ensure proper device operation!

IO Expansion connector pin map

Pin #	I/O Bank	PHY#	PHY Signals	Pin#	I/O Bank	PHY#	PHY Signals
A01	+3.3V_RUN		3.3V	B01	+3.3V_RUN		3.3V
A02	VCC_CARD_EN		POWER_EN	B15	XPIO_L5P	0	ETH_RESET
A15	XPIO_L4N	0	MDIO	B16	XPIO_L5N	0	MDC
A18	XPIO_L8P	0	TXD2	B18	XPIO_L9P	0	RX_CLK
A19	XPIO_L8N	0	TXD3	B19	XPIO_L9N	0	RX_CTL
A21	XPIO_L12P	1	TX_CLK	B21	XPIO_L13P	1	TXD0
A22	XPIO_L12N	1	TX_CTL	B22	XPIO_L13N	1	TXD1
A30	XPIO_L24P	1	RX_CLK	B30	XPIO_L25P	1	RXD1
A31	XPIO_L24N	1	RX_CTL	B31	XPIO_L25N	1	RXD0
A37	HDIO12	1	CLKIN				

Pin#	I/O Bank	PHY#	PHY Signals	Pin#	I/O Bank	PHY#	PHY Signals
C01	+3.3V_RUN		3.3V	D01	+3.3V_RUN		3.3V
C02	LPD_MIO4_GPIO		Serial I/O	D15	XPIO_L7P	0	TXD0
C15	XPIO_L6P	0	TX_CLK	D16	XPIO_L7N	0	TXD1
C16	XPIO_L6N	0	TX_CTL	D18	XPIO_L11P	0	RXD2
C18	XPIO_L10P	0	RXD0	D19	XPIO_L11N	0	RXD3
C19	XPIO_L10N	0	RXD1	D27	XPIO_L23P	1	ETH_RESET
C21	XPIO_L14P	1	TXD2	D30	VCCO_XPIO		1.5V
C22	XPIO_L14N	1	TXD3	D31	VCCO_XPIO		1.5V
C27	XPIO_L22P	1	MDIO	D38	VCCO_HDIO		1.8V
C28	XPIO_L22N	1	MDC	D39	VCCO_HDIO		1.8V
C30	XPIO_L26P	1	RXD3				
C31	XPIO_L26N	1	RXD2				
C35	HDIO10	0	CLKIN				


To install the Dual Ethernet 1G Card:

- 1. Align the card with the IO Expansion Board Socket, and press down on the card until it is completely seated in the slot.
- 2. Fasten Dual Ethernet 1G Card onto the nut with accompanied screws.

GMSL Card

CN1 MATE-AX conn. power controller I2C address: 0x50/0x51

PHY0 CFG0 controller I2C address: 0x52/0x53 PHY0 CFG1 controller I2C address: 0x56/0x57

CN2 MATE-AX conn. power controller I2C address: 0x52/0x53

PHY1 CFG0 controller I2C address: 0x50/0x51 PHY1 CFG1 controller I2C address: 0x54/0x55

Note: When the value has been adjusted using I2C address. You need to restart the power with A02 pin (POWER_EN).

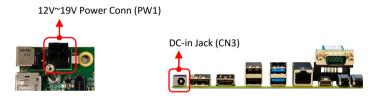
IO Expansion connector pin map

Pin #	I/O Bank	PHY#	PHY Signals	Pin #	I/O Bank	PHY#	PHY Signals
A01	+3.3V_RUN		3.3V	B01	+3.3V_RUN		3.3V
A02	VCC_CARD_EN		POWER_EN	B12	XPIO_L3P	1	DA2P
A15	XPIO_L2P	1	DA1P	B13	XPIO_L3N	1	DA2N
A16	XPIO_L2N	1	DA1N	B15	XPIO_L4P	1	DA0P
A18	XPIO_L7P	0	DB1P	B16	XPIO_L4N	1	DAON
A19	XPIO_L7N	0	DB1N	B18	XPIO_L8P	0	DB2P
A21	XPIO_L16P	1	СКВР	B19	XPIO_L8N	0	DB2N
A22	XPIO_L16N	1	CKBN	B21	XPIO_L12P	1	DB0P
A24	XPIO_L15P	1	DB3P	B22	XPIO_L12N	1	DBON
A25	XPIO_L15N	1	DB3N	B27	XPIO_L21P	0	DA0P
A27	XPIO_L20P	0	DA2P	B28	XPIO_L21N	0	DAON
A28	XPIO_L20N	0	DA2N	B33	HDIO1	Shared	CFG_I2C_SDA
A33	HDIO0	Shared	CFG_I2C_SCL	B34	HDIO5	PHY0_MFP5	PHY0_ERRB
A34	HDIO4	PHY0_MFP4	PHY0_LOCK	B35	HDIO9	PHY0_MFP3	PHY0_GPIO3
A35	HDIO8	PHY0_MFP2	PHY0_GPIO2	B37	HDIO13	PHY1_MFP7	PT_I2C_SDA_1
A37	HDIO12	PHY1_MFP8	PT_I2C_SCL_1	B38	HDIO17	PHY1_MFP1	PHY1_GPIO1
A38	HDIO16	PHY1_MFP0	PHY1_GPIO0	B39	HDIO20	PHY0/PHY1	CFG2_SEL0
A39	HDIO19	PHY1_MFP3	PHY1_GPIO3				

Pin #	I/O Bank	PHY#	PHY Signals	Pin#	I/O Bank	PHY#	PHY Signals
C01	+3.3V_RUN		3.3V	D01	+3.3V_RUN		3.3V
C02	LPD_MIO4_GPIO		Serial I/O	D12	XPIO_L5P	1	CKAP
C12	XPIO_L1P	1	DA3P	D13	XPIO_L5N	1	CKAN
C13	XPIO_L1N	1	DA3N	D15	XPIO_L6P	0	DB0P
C15	XPIO_L10P	0	CKBP	D16	XPIO_L6N	0	DB0N
C16	XPIO_L10N	0	CKBN	D21	XPIO_L14P	1	DB2P
C18	XPIO_L9P	0	DB3P	D22	XPIO_L14N	1	DB2N
C19	XPIO_L9N	0	DB3N	D24	XPIO_L19P	0	DA3P
C21	XPIO_L13P	1	DB1P	D25	XPIO_L19N	0	DA3N
C22	XPIO_L13N	1	DB1N	D30	VCCO_XPIO		1.2V
C24	XPIO_L18P	0	CKAP	D31	VCCO_XPIO		1.2V
C25	XPIO_L18N	0	CKAN	D33	HDIO3	PHY0_MFP7	PT_I2C_SDA_0
C27	XPIO_L22P	0	DA1P	D34	HDIO7	PHY0_MFP1	PHY0_GPIO1
C28	XPIO_L22N	0	DA1N	D35	HDIO11	PHY1_PWDNB	PWDNB_1
C33	HDIO2	PHY0_MFP8	PT_I2C_SCL_0	D37	HDIO15	PHY1_MFP5	PHY1_ERRB
C34	HDIO6	PHY0_MFP0	PHY0_GPIO0	D38	VCCO_HDIO		1.8V
C35	HDIO10	PHY0_PWDNB	PWDNB_0	D39	VCCO_HDIO		1.8V
C37	HDIO14	PHY1_MFP4	PHY1_LOCK				
C38	HDIO18	PHY1_MFP2	PHY1_GPIO2				
C39	HDIO21	PHY0/PHY1	CFG2_SEL1				

To install the GMSL Card:

- Align the card with the IO Expansion Board Socket, and press down on the card until it is completely seated in the slot.
- 2. Fasten GMSL Card onto the nut with accompanied screws.
- Connect the 4-pin power cable to DC input (12V) connector of GSML card and other side connect to 4-pin power connector (PW1) of mainboard.


PW1 Power Usage:

PW1 can serve as the power input for the VPR platform, as an alternative to the rear panel DC jack (CN3).

Please note that only one power input — either PW1 or CN3 — should be used at a time. Do not connect power to both simultaneously.

When using an expansion daughtercard that requires a 12V power supply (such as the GMSL daughtercard) and planning to distribute power internally through PW1, please follow the configuration below:

- Use CN3 (DC jack) as the sole power input.
- Use an external power supply that outputs 12V.
 - Although the mainboard supports an input voltage range of approximately 12V to 19V, the daughtercard requires a fixed 12V input voltage.

⚠ Caution

When using the GMSL daughtercard, do not apply an input voltage higher than 12V to avoid damage to the daughtercard.

If supplying power through PW1, please ensure that the voltage requirements of any other connected daughtercards are compatible with the main power input.

Verified GMSL:

logiCAM-GMSL2-AR0231-05525FM 2.3MP HDR Automotive Video Camera - Narrow Angle Lens

 $\label{logicam-gmsl2-AR0231-DSL182B} \ 2.3 \text{MP HDR Automotive Video Camera-Wide Angle Lens}$

Firmware version: v1.0.1 1_220323_1.

Reference Link:

https://xylon-lab.com/product-category/related-products/gmsl2-cameras/

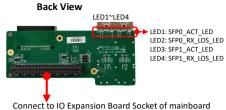
Note: The cable which Xylon camera bundles is not compatible with our GMSL2 board.

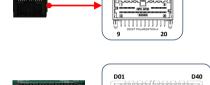
Compatible Quad FAKRA GMSL Cable

Compatible cables with TE connector (part number: CON-MATE-AX-13_5H).

Reference Link:

https://www.wdlsystems.com/CTI-Quad-FAKRA-GMSL-Cable


Dual 10/25Gb SFP28 Card


Front View

Mini50 connector SPF28 connector

Mini50 P/N: 34826-8200

Pin	Definition	FPGA Pin	Pin	Definition	FPGA Pin
1	GPI0	F14	9	GPO0	C13
2	GPI1	E14	10	GPO1	E13
3	GPI2	C14	11	GPO2	D14
4	GND		12	GPI3	E12
5	GND		13	GPI4	D12
6	GPI6	D10	14	GPI5	F11
7	GPI7	C10	15	GPO3	E11
8	GPI8	B10	16	GPO4	D11
			17	GPO5	C12
			18	GPO8	B12
			19	GPO7	A11
			20	GPO6	A10

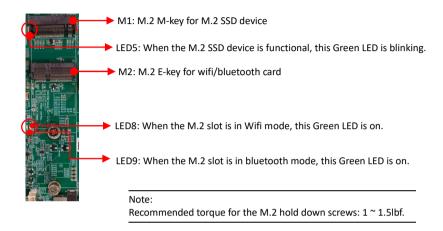
IO Expansion connector pin map

Connector Pin #	Signals	FPGA Pin#	Host Signals	Connector Pin #	Signals	FPGA Pin#	Host Signals
A01	+3.3V_RUN		+3.3V	B01	+3.3V_RUN		+3.3V
A02	POWER_EN	AD6	VCC_CARD_EN	B03	REF_CLKO_P	H7	GTYP_REFCLKO_P
A06	SFP1_TX_P	D8	GTYP_TX1_P	B04	REF_CLKO_N	Н6	GTYP_REFCLKO_N
A07	SFP1_TX_N	D7	GTYP_TX1_N	B09	SFP1_RX_P	D2	GTYP_RX1_P
A09	SFP0_RX_P	F2	GTYP_RX0_P	B10	SFP1_RX_N	D1	GTYP_RX1_N
A10	SFP0_RX_N	F1	GTYP_RX0_N	B33	GPI1	E14	HDIO1
A33	GPI0	F14	HDIO0	B34	GPO2	D14	HDIO5
A34	GPO1	E13	HDIO4	B35	GPO3	E11	HDIO9
A35	GPI5	F11	HDIO8	B37	GPI7	C10	HDIO13
A37	GPI6	D10	HDIO12	B38	GPO7	A11	HDIO17
A38	I2C_SCL	B11	HDIO16	B39	REF_CLKO_DISABLE_L	B13	HDIO20
A39	I2C_SDA	A13	HDIO19				

Connector Pin #	Signals	FPGA Pin#	Host Signals	Connector Pin #	Signals	FPGA Pin#	Host Signals
C01	+3.3V_RUN		+3.3V	D01	+3.3V_RUN		+3.3V
C02	Serial I/O	Y2	LPD_MIO4_GPIO	D03	REF_CLK1_P	F7	GTYP_REFCLK1_P
C33	GPI2	C14	HDIO2	D04	REF_CLK1_N	F6	GTYP_REFCLK1_N
C34	GPI3	E12	HDIO6	D06	SFP0_TX_P	E5	GTYP_TX0_P
C35	GPO4	D11	HDIO10	D07	SFP0_TX_N	E4	GTYP_TX0_N
C37	GPI8	B10	HDIO14	D33	GPO0	C13	HDIO3
C38	GPO8	B12	HDIO18	D34	GPI4	D12	HDIO7
C39	REF_CLK1_DISABLE_L	A14	HDIO21	D35	GPO5	C12	HDIO11
				D37	GPO6	A10	HDIO15
				D38	VCCO_HDIO		+3.3V
				D39	VCCO_HDIO		+3.3V

To install the SFP28 Card:

- 1. Align the card with the IO Expansion Board Socket, and press down on the card until it is completely seated in the slot.
- 2. Fasten SFP28 Card onto the nut with accompanied screws.

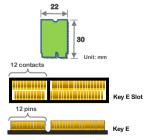


M.2 E-Key Slot/ M.2 M-Key Slot

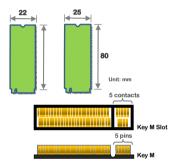
The mainboard provides

One M.2 Slot M-key (PCIe 3.0~x4 and SATA) with 2280/2580 storage type for SSD One M.2 Slot E-key (PCIe x1 and USB2.0) with 2230 type for Wifi/BT

M.2 E-Key Slot Installation


To install the M.2 wifi/bluetooth card (type 2230):

- 1. Remove screws and align the notch on the M.2 wifi/bluetooth card edge connector with the tab in the slot.
- 2. Plug the M.2 wifi/bluetooth card firmly into the slot at a 20-degree angle, and until it clicks into place.
- Fasten M.2 wifi/bluetooth card onto the nut with accompanied screws.



M.2 M-Key Slot Installation

To install the M.2 SSD device (type 2280/2580):

- 4. Remove screws and align the notch on the M.2 SSD device edge connector with the tab in the slot.
- 5. Plug the M.2 SSD device firmly into the slot at a 20-degree angle, and until it clicks into place.
- 6. Fasten M.2 SSD device onto the nut with accompanied screws.

Note:

The mainboard in the picture is not actual mainboard, just for reference.

Removing Device Caution

- Remove the M.2 wifi/bluetooth card or M.2 SSD device at a 20-degree angle.
- Please DO NOT pull up the M.2 wifi/bluetooth card or M.2 SSD device to avoid damage to the M.2 slot.

M.2 E-key 2230 – Supports PCle x1 & USB2.0 based device

Pin id.	Pin name	Description	Voltage
1	GND	Ground	
2	+3.3V	3.3 V power supply	
3	USB_D+	USB high-, full-, and low-speed data pair positive	
4	+3.3V	3.3 V power supply	
5	USB_D- LED1#	USB high-, full-, and low- speed data pair negative M2 WL LED-	
- 6 7	GND	Ground	
8	N/A	Ground	
9	N/A		
10	N/A		
11	N/A		
12	N/A		
13	N/A		
14	N/A		
15	N/A		
16	LED2#	M2_BT_LED-	
17	N/A GND	Ground	
18 19	N/A	Ground	
20	WAKE#	M2_BT_WAKE-	0/3.3V
21	N/A		9,5151
22	N/A		
23	N/A		
24-31	Key E	Substrate removed to act as physical key	
32	N/A		
33	GND	Ground	
34	N/A		
35 36	PETp0 N/A	PCI Express lane 0 module transmitter pair positive	
37	PETn0	PCI Express lane 0 module transmitter pair negative	
38	Devic WAKE#	BT DEV WAKE-	0/3.3V
39	GND	Ground	0/3.34
40	N/A	ordina .	
41	PERp0	PCI Express lane 0 module receiver pair positive	
42	N/A		
43	PERn0	PCI Express lane 0 module receiver pair negative	
44	N/A		
45	GND	Ground	
46 47	N/A PEFCLKPO	DCI Funzasa reference elegis neis necitivo	
48	N/A	PCI Express reference clock pair positive	
49	PEFCLKN0	PCI Express reference clock pair negative	
50	SUSCLK	32.768 kHz clock module input	0/3.3V
51	GND	Ground	
52	PERSTO#	PCI Express reset	0/3.3V
53	CLKREQ0#	PCI Express clock request	0/3.3V
54	W_DISABLE2#	Wireless disable 2	0/3.3V
55	PEWake0#	PCI Express wake	0/3.3V
56	W_DISABLE1#	Wireless disable 1	0/3.3V
57	GND N/A	Ground	
58 59	N/A N/A		
60	N/A		
61	N/A		
62	N/A		
63	GND	Ground	
64	N/A		
65	N/A		
66	N/A		
67	Reserved/PERn1		
68 69	N/A GND	Ground	
70	N/A	Ground	
71	N/A		
72	+3.3V	power supply	3.3 V
73	N/A	r. · · · · · · · · · ·	
	IN/A		
74	+3.3V	power supply	3.3 V

M.2 M-key 2280- Supports PCIe x4 NVMe & SATA SSD Storage

Pin id.	Pin name	Description	Voltage
1	NC	No Connect	
2	3.3 V	Supply pin	3.3 V
3	GND	Ground	
4	3.3 V	Supply pin	3.3 V
5	PERn3	PCIe Lane 3 Rx	
6	N/A		
7	PERp3	PCIe Lane 3 Rx	
8	N/A		
9	GND	Ground	
10	DAS/DSS	Device Activity Signal / Disable Staggered Spinup	
11	PETn3	PCIe Lane 3 Tx	221
12	3.3 V PETp3	Supply pin PCIe Lane 3 Tx	3.3 V
14	3.3 V	Supply pin	3.3 V
15	GND	Ground	3.5 V
16	3.3V	Supply pin	3.3 V
17	PERn2	PCIe Lane 2 Rx	3.3 V
18	3.3 V	Supply pin	3.3 V
19	PERp2	PCIe Lane 2 Rx	5.5 *
20	N/A		
21	GND	Ground	
22	N/A		
23	PETn2	PCIe Lane 2 Tx	
24	N/A		
25	PETp2	PCIe Lane 2 Tx	
26	N/A		
27	GND	Ground	
28	N/A		
29	PERn1	PCIe Lane 1 Rx	
30	N/A		
31	PERp1	PCIe Lane 1 Rx	
32	N/A		
33	GND	Ground	
34	N/A		
35	PETn1	PCIe Lane 1 Tx	
36	N/A		
37	PETp1	PCIe Lane 1 Tx	
38	N/A	Constant	
39 40	GND N/A	Ground	
41	SATA-B+/PERn0	Host receiver differential signal pair. If in PCIe mode PCIe Lane 0 Rx	
42	N/A	Host receiver differential signal pail. If the role mode role care of Kx	
43	SATA-B-/PERp0	Host receiver differential signal pair. If in PCIe mode PCIe Lane 0 Rx	
44	N/A	nost receiver differential signal pail. If first circ mode sice cane only	
45	GND	Ground	
46	N/A	Cround	
47	SATA-A-/PETn0	Host transmitter differential signal pair. If in PCIe mode PCIe Lane 0 Tx	
48	N/A		
49	SATA-A+/PETp0	Host transmitter differential signal pair. If in PCIe mode PCIe Lane 0 Tx	
50	PERST#	PCIe reset	
51	GND	Ground	
52	CLKREQ#	Reference clock request signal	
53	REFCLKN	PCIe Reference Clock signals (100 MHz)	
54	PEWAKE#	PCIe WAKE# Open Drain with pull up on platform. Active Low.	
55	REFCLKP	PCIe Reference Clock signals (100 MHz)	
56	N/A		
57	GND	Ground	
58	N/A		
59-66	removed (Key M)	Mechanical notch M	
67	N/A		
68	SUSCLK	32.768 kHz clock supply input provided by the Platform chipset	
69	CONFIG_1	Defines module type (0 :SATA 1:NVME)	
70	3.3 V	Supply pin	3.3 V
71	GND	Ground	221/
72	3.3 V	Supply pin	3.3 V
73	GND	Ground	221/
74 75	3.3 V GND	Supply pin Ground	3.3 V
/5	מאוט	Ground	1

2-3 Connecting Cables and Jumper Settings

This section takes you through all the necessary connections on the mainboard.

Front Panel Header

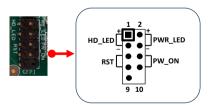
The front panel header (CFP1, 2.54mm pitch) on this motherboard is used to connect the front panel switches and LEDs.

PWR LED

Attach the front panel power LED cable to these two pins of the connector. The Power LED indicates the system's status.

System Status	Power LED indicates
S0	The LED is on
S5	The LED is off
S3	The LED will blink
S4	The LED is off

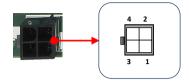
PW ON


Attach the power button cable from the case to these two pins. Pressing the power button on the front panel turns the system on and off rather than using the onboard button.

► HD LED

Attach the hard disk drive indicator LED cable to these two pins. The HDD indicator LED indicates the activity status of the hard disks.

RESET


Attach the Reset switch cable from the front panel of the case to these two pins. The system restarts when the RESET switch is pressed.

Header	Pin	Signal
UD LED	1	HD_PWR
HD_LED	3	HD Active
PWRLED	2	PWR LED+
PWKLED	4	PWR LED-
RESET	5	Ground
KESET	7	RST BTN
PWRSW	6	PWR BTN
PWKSW	8	Ground
No Connect	9	+5V
Empty	10	Empty

4-pin 12V~19V Power Connector

PW1, This power connector is used to provide power to the system. Align the power plug to the connector and press firmly until seated.

Pin	Definition
1	GND
2	GND
3	12V~19V
4	12V~19V

DC-in Jack (CN3)

Note 1:

There are two ways to source power to the board: DC-in jack or 4-pin power connector. Two different physical ports that can only be used one at a time.

e.g. When DC-in 12V ~ 19V jack is being used, the 4-pin power connector shouldn't be connected to any power source.

Warning:

One of the power inputs may be damaged when connecting both DC jack and 4-pin power connector at the same time.

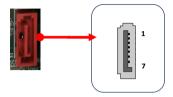
PW1 Power Usage:

PW1 can serve as the power input for the VPR platform, as an alternative to the rear panel DC jack (CN3).

Please note that only one power input — either PW1 or CN3 — should be used at a time. Do not connect power to both simultaneously.

When using an expansion daughtercard that requires a 12V power supply (such as the GMSL daughtercard) and planning to distribute power internally through PW1, please follow the configuration below:

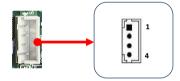
- Use CN3 (DC jack) as the sole power input.
- Use an external power supply that outputs 12V.
 - Although the mainboard supports an input voltage range of approximately 12V to 19V, the daughtercard requires a fixed 12V input voltage.


Caution

When using the GMSL daughtercard, do not apply an input voltage higher than 12V to avoid damage to the daughtercard.

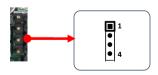
If supplying power through PW1, please ensure that the voltage requirements of any other connected daughtercards are compatible with the main power input.

SATA3 Connector


The S1 is SATA3 Connectors and works at speeds of up to 6G/s. Each cable can be used to connect one SATA drive to the mainboard.

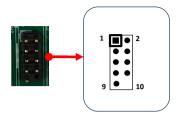
Pin	Definition
1	GND
2	TX+
3	TX-
4	GND
5	RX-
6	RX+
7	GND

SATA Power Header


The SATA Power header is used to provide 5V and 12V power to SATA3 connector.

Pin	Definition
1	+12V
2	GND
3	GND
4	+5V

USB2.0 Header


This mainboard contains one 4-pin onboard header (USB2-A, 2.54mm pitch) that can be used to connect to one (1) external USB 2.0 device.

Pin	Definition
1	VCC
2	USB0-
3	USB0+
4	GND

COM Header

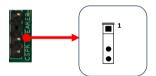
The Serial port header (COM2, 2.54mm pitch) can provide one serial port via an optional COM port cable.

Pin	Definition	Pin	Definition
1	DCD	2	RXD
3	TXD	4	DTR
5	GND	6	DSR
7	RTS	8	CTS
9	RI#	10	Empty

Note:

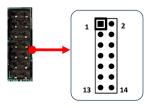
The pin definition of header and standard DB9 male pin out is different.

Case Open Header


This header (J12, 2.54mm pitch) is used to for a chassis open detect. When set, the warning message will appear during POST when the case is opened.

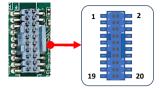
Pin	Definition
1	Case Open
2	GND

Speaker Header


This header (CSPK, 2.54mm pitch) is used to connect the case's speaker for PC beeps.

Pin	Definition
1	Speaker out
2	Empty
3	GND
4	GND

AMD FPGA JTAG Port (Internal Use Only)


This header (J2, 2.54mm pitch)

Pin	Definition	Pin	Definition
1	GND	2	+1.8V
3	GND	4	VE2302_TMS
5	GND	6	VE2302_TCK
7	GND	8	VE2302_TDO
9	GND	10	VE2302_TDI
11	GND	12	NC
13	GND	14	RESET-

AMD APU HDT+ Header (Internal Use Only)

This header (J5, 1.27mm pitch)

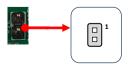
Pin	Definition	Pin	Definition
1	+1.8V_ALW	2	APU_TCK
3	GND	4	APU_TMS
5	GND	6	APU_TDI
7	GND	8	APU_TDO
9	APU_TRST-	10	APU_PWRGD
11	GND	12	RESET-
13	GND	14	NC
15	GND	16	APU_DBREQ-
17	GND	18	NC
19	+1.8V_ALW	20	NC

VE2302 GPIO1 Header

This header (J6, 2.54mm pitch)

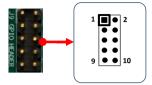
Pin	Definition	
1	FuSa_GPIO_1	
2	GND	

AMD APU HDT Warm Reset Header (Internal Use Only)


This header (J7, 2.54mm pitch)

Pin	Definition
1	APU Reset-
2	GND

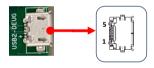
VE2302 GPIO2 Header


This header (J8, 2.54mm pitch)

Pin	Definition	
1	FuSa_GPIO_2	
2	GND	

AMD GPIO Header

There is a GPIO (General-purpose input/output) header (J9, 2.54mm pitch) on the motherboard. It can connect a variety of simple one- or two-wire devices.


Pin	Definition	Pin	Definition
1	GPIO	2	GPIO
3	GPIO	4	GPIO
5	GPIO	6	GPIO
7	GPIO	8	GPIO
9	+3.3V_ALW	10	GND

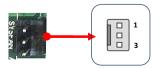
External USB INPUT Connector (USB2-DEUG) (Select by JP4)

When the JP4 plug connects pins 1-2, the FPGA debug USB port source is from internal USB 2.0 port of APU.

When the JP4 plug connects pins 2-3, the FPGA debug USB port source is from an external computer through the micro-USB port (USB2-DEUG connector).

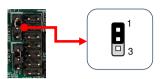
The user needs to supply a standard USB micro USB to Type A cable for this connection.

Pin	Definition
1	NC
2	USB2_D-
3	USB2_D+
4	NC
5	GND


Fan Headers

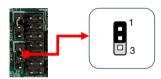
There are two headers (CPUFAN and SYSFAN, 2.54mm pitch) on the motherboard. These fans can be speed detected/controlled and displayed in the Hardware Health Configuration section of the CMOS Setup. The fans are automatically turned off after the system enters S3, S4 or S5 mode.

Pin	Definition
1	GND
2	+12V
3	Sense
4	Control


Note:	
The CPU f	an cable can be either a
3-pin or a	4-pin connector.
Connect a	3-pin connector to
pins 1, 2, a	and 3 on the mainboard
connector	

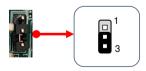
Pin	Definition
1	GND
2	+12V
3	Sense

PSLP Power Control Jumper (JP1)


You can use JP1 (2.54mm pitch) to select to enable or disable the PSLP Power function.

Pin	Settings
1-2	Enable VCC_PSLP Power (Default)
2-3	Disable VCC_PSLP Power

PSFP Power Control Jumper (JP2)

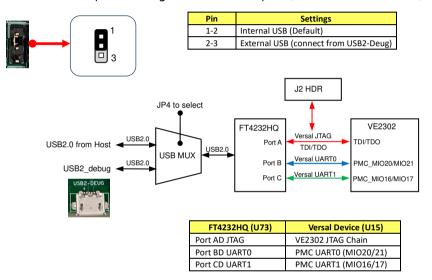

You can use JP2 (2.54mm pitch) to select to enable or disable the PSFP Power function.

Pin	Settings
1-2	Enable VCC_PSFP Power (Default)
2-3	Disable VCC_PSFP Power

FUSE Power Control Jumper (JP3)

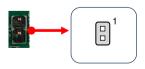
You can use JP3 (2.54mm pitch) to select to enable or disable the FUSE Power Control function.

Settings
Enable Burn the FUSE
Disable Burn the FUSE (Default)


USB Debug Port Selection Jumper of VE2302 (JP4)

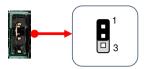
The Versal AI Edge VE2302 FPGA is connected to a USB 2.0 interface via an FTDI FT4232 USB-to-JTAG/USB-UART device, providing access for debugging purposes.

There are two debug USB port that are selected by JP4.


When the JP4 plug connects pins 1-2, the FPGA debug USB port source is from internal USB 2.0 port of APU.

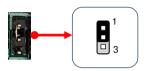
When the JP4 plug connects pins 2-3, the FPGA debug USB port source is from an external computer through the micro-USB port (USB2-DEUG connector).

VE2302 MODE Selection Jumper (JP5)


You can use JP5 (2.54mm pitch) for VE2302 MODE selection.

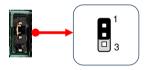
Pin	Settings
NC	OSPI Mode (Default)
POP	JTAG Mode

ROM Write Protect mode Jumper (JP6)


You can use JP6 (2.54mm pitch) for ROM Write Protect mode selection.

Pin	Settings
1-2	Write Protect (Default)
2-3	Write Operations

Versal Power Control Jumper (JP7)


You can use JP7 (2.54mm pitch) for Versal Power Control.

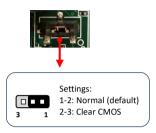
Pin	Settings
1-2	Enable All of Versal Power (Default)
2-3	Disable All of Versal Power

Main Power Control Jumper (JP8)

You can use JP8 (2.54mm pitch) for Main Power Control.

Pin	Settings
1-2	Enable Main Power (Default)
2-3	Disable Main Power

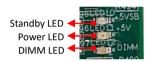
Auto Power ON Jumper (JP9)

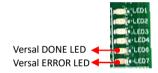

You can use JP9 (2.54mm pitch) to select to enable or disable the auto power on function.

Pin	Settings
	Disable.
1-2	Press power button manually to power on after
	power input is connected to power source
	Enable.
2-3	Automatically power on when power input is
	connected to power source (Default)

Clear CMOS Jumper (CMOS1)

This mainboard contains a jumper (CMOS1) that can clear CMOS data. If the CMOS data becomes corrupted or you forgot the supervisor or user password, clear the CMOS data to reconfigure the system back to the default values stored in the ROM BIOS.


To clear CMOS data, please follow the steps below.


- 1. Turn off the system.
- 2. Change the jumper from "1-2" to "2-3" position for a few seconds.
- 3. Replace the jumper back to the "1-2" position.
- 4. Turn on the system and hold down the key to enter BIOS Setup.

2-4 System LED Status Indicators

This mainboard provides three LEDs to indicate the system's status.

- STANDBY LED (LED10, Blue): When the System is in Standby Mode, this LED
 is on. This LED will remain on as long as the motherboard is receiving
 constant power.
- POWER LED (LED11, Green): When the System is powered on, this LED is on.
- DIMM LED (LED12, Yellow): When the Memory slot is functional, this LED is on.
- Versal DONE LED (LED6, Green): Indicates the AMD VE2302's done status.
- Versal ERROR LED (LED7, Red): Indicates the AMD VE2302's error status.

2-5 Minimum connection required to boot

A motherboard in its minimal boot configuration requires only the following:

RAM: 8GB, 2 x 4GB DDR4

Storage: a 512GB SSD

• Power Supply: 120W (Recommended)

Monitor: HDMI or DP Monitor

Keyboard and Mouse: USB Keyboard and Mouse

Chapter 3 Configuring the BIOS

This chapter provides information on the BIOS Setup program and allows you to configure the system for optimum use.

3-1 Select Boot Device

Select Boot Device Menu allows you to set the first boot device without entering BIOS Setup.

During Power On Self Test (POST), you can press the **<F7>** key to enter select boot device menu. The system will directly boot from the device configured in Boot Menu.

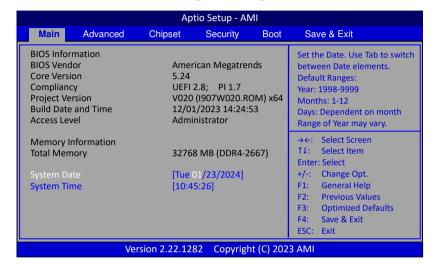
3-2 Enter BIOS Setup

The BIOS is the communication bridge between hardware and software. Correctly setting the BIOS parameters is critical to maintain optimal system performance.

Use the following procedure to change BIOS settings.

- 1. Power on the computer.
- Press the **Del>** or **F2>** key to enter BIOS Setup during BIOS Power On Self Test (POST).
 - ♣ Note1: You do not "need" to update the BIOS when receiving your system it is shipped with working BIOS setting.
 - Note2: It is strongly recommended that you do not change the default BIOS settings. Changing some settings could damage your computer.

Note3: The BIOS options in this manual are for reference only. BIOS screens in manuals are usually the first BIOS version when the board is released and may be different from your purchased motherboard. Users are welcome to download the latest BIOS version from our official website


Control Keys

Please check the following table for the function description of each Control key.

Control Key(s)	Function Description
→/←	Moves cursor left or right to select screens
^/↓	Moves cursor up or down to select items
<enter></enter>	To bring up the selected item
+/-	To change option for the selected items
<f1></f1>	To display the General Help Screen
<f2></f2>	To load previous values for all the settings
<f3></f3>	To load optimized default values for all the settings
<f4></f4>	To save changes and exit the setup utility
<esc></esc>	To jump to the Exit Screen or exit the current screen

3-3 Main Menu

When entering the Aptio Setup Utility, the main menu screen appears. This main menu includes the system overview and displays the basic system configuration, such as BIOS information, memory size and system date/time.

BIOS Information

This field displays the current BIOS version, build date and ID information etc..

Memory Information

Displays current system memory size.

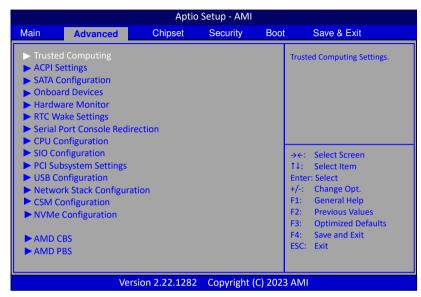
System Date

Allows you to set the system date. The format is < Day> < Month> < Date> < Year>.

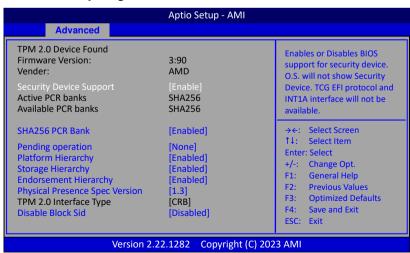
[Day] Weekday from Sun. to Sat., this is automatically displayed by BIOS.

[Month] The month from 1 to 12.

[Date] The date from 1 to 31 can be keyed by numeric function keys.


[Year] The year can be adjusted by users.

System Time


Allows you to set the system time. The time format is <hour>:<minute>:<second>.

3-4 Advanced Menu

The Advanced menu items allow you to change the settings for the CPU, USB and other system devices. Press <Enter> to display the configuration options.

Trusted Computing

Security Device Support

Enables or disables BIOS support for security device. O.S. will not show Security Device. TCG EFI protocol and INT1A interface will not be available. When enabled, the related items will appear.

Options: Enabled, Disabled.

SHA256 PCR Bank

Enable or disable SHA256 PCR Bank.

Options: Enabled, Disabled.

Pending operation

Schedule an Operation for the Security Device.

NOTE: Your Computer will reboot during restart in order to change State of

Security Device.

Options: None, TPM Clear.

Platform Hierarchy

Enables or disable Platform Hierarchy.

Options: Enabled, Disabled.

Storage Hierarchy

Enables or disable Storage Hierarchy.

Options: Enabled, Disabled.

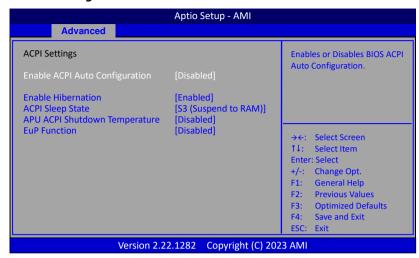
Endorsement Hierarchy

Enables or disable Endorsement Hierarchy.

Options: Enabled, Disabled.

Physical Presence Spec Version

Select to Tell 0.S. to support PPI Spec version 1.2 or 1.3. Note some HCK tests might not support 1.3.


Options: 1.2, 1.3.

Disable Block Sid

Override to allow SID authentication in TCG Storage device.

Options: Enabled, Disabled.

ACPI Settings

Enable ACPI Auto Configuration

This item allows you to enable or disable BIOS ACPI Auto Configuration. Options: Enabled, Disabled.

Enable Hibernation

This item allows you to enable system ability to Hibernate (OS/S4 Sleep Sate). This option may be not effective with some OS.

Options: Enabled, Disabled.

ACPI Sleep State

Allow you to select the power saving modes for ACPI function.

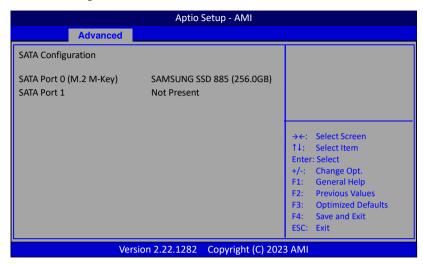
Options: Suspend Disabled, S3 (Suspend to RAM).

APU ACPI Shutdown Temperature

If the APU temperature is higher than ACPI shutdown temperature, the system will shut down. When set to "Enabled" option. The following items will appear.

Shutdown Temperature

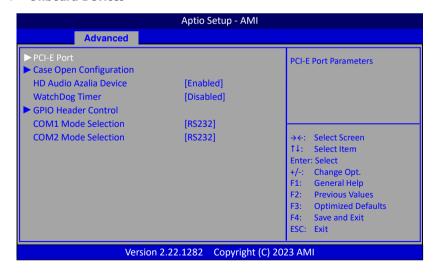
Allows you set a value of temperature for system shutdown.


The default is 80.

EuP Function

Enables the EuP (Energy Using Products) function, allows BIOS to switch off some power at S5 state to get system ready for the EuP requirement to reduce power consumption.

Options: Enabled, Disabled.


SATA Configuration

SATA Port 0 (M.2 M-Key) / SATA Port 1

This field shows SATA ports connection state.

Onboard Devices

PCI-E Port

XILINX Versal VE2302 (PCIE 4)

Allows you to enable or disable the onboard XILINX Versal VE2302.

Options: Enabled, Disabled.

ASM Mode Control

NB Root Port ASPM Mode Control.

Options: Disabled, LOS Entry, L1 Entry, LOS and L1 Entry, Auto.

Hotplug Mode Control

NB Root Hotplug Mode Control.

Options: Disabled, Hotplug Basic, Hotplug Server, Hotplug Enhanced,

Hotplug Inboard, Auto.

Fixed I/O Resources

Fixed PCI I/O Resources.

Options: Disabled, 4K, 8K, 16K, 32K.

Fixed MMIO 32 bit Resources

Fixed PCI MMIO 32 bit Resources.

Options: Disabled, 1M, 2M, 4M, 8M, 16M, 32M, 64M, 128M.

Fixed PFMMIO 32 bit Resources

Fixed PCI MMIO 32 bit Prefetchable Resources.

Options: Disabled, 1M, 2M, 4M, 8M, 16M, 32M, 64M, 128M.

Fixed PFMMIO 64 bit Resources

Fixed PCI MMIO 32 bit Prefetchable Resources.

Options: Disabled, 1M, 2M, 4M, 8M, 16M, 32M, 64M, 128M, 256M, 512M, 1G, 2G, 4G, 8G.

M.2 M-Key Socket (PCIE x4)

Allows you to enable or disable the M.2 M-Key Socket.

Options: Disabled, Enabled.

ASM Mode Control

NB Root Port ASPM Mode Control.

Options: Disabled, LOS Entry, L1 Entry, LOS and L1 Entry, Auto.

Hotplug Mode Control

NB Root Hotplug Mode Control.

Options: Disabled, Hotplug Basic, Hotplug Server, Hotplug Enhanced,

Hotplug Inboard, Auto.

M.2 E-Key Socket (PCIE x1)

Allows you to enable or disable the M.2 E-Key Socket.

Options: Disabled, Enabled.

ASM Mode Control

NB Root Port ASPM Mode Control.

Options: Disabled, LOS Entry, L1 Entry, LOS and L1 Entry, Auto.

Hotplug Mode Control

NB Root Hotplug Mode Control.

Options: Disabled, Hotplug Basic, Hotplug Server, Hotplug Enhanced,

Hotplug Inboard, Auto.

Onboard 2.5 Gigabit LAN (PCIE x1)

Allows you to enable or disable the onboard LAN controller.

Options: Enabled, Disabled.

ASM Mode Control

NB Root Port ASPM Mode Control.

Options: Disabled, LOS Entry, L1 Entry, LOS and L1 Entry, Auto.

Hotplug Mode Control

NB Root Hotplug Mode Control.

Options: Disabled, Hotplug Basic, Hotplug Server, Hotplug Enhanced,

Hotplug Inboard, Auto.

Case Open Configuration

The chassis intrusion detection alerts you whenever your computer chassis was opened. If the case cover is opened, the system will automatically restart and appear prompt message (Shown below) during POST.

HD Audio Azalia Device

Allows you to enable or disable the onboard High Definition Audio controller. Options: Disabled, Enabled.

WatchDog Timer

Allow you to enable WatchDog timer expires during OS boot. When set to "Enabled" option. The following items will appear.

Time of watchdog timer (second)

Allows you set a period of seconds for watchdog timer.

Options: 5 ~ 255 second.

GPIO Header Control

This sub-item is for GPIO (General-purpose input/output) header control, each GPIO is accessible via a connector pin.

COM1 Mode Selection / COM2 Mode Selection

Allows you to select RS232/RS485/RS422 Mode.

Options: RS422, RS232, RS485 Receiver Half Duplex, RS485 Driver Half Duplex.

Hardware Monitor

А	ptio Setup - AMI			
Advanced				
PC Health Status CPU Fan Stopped Working Alarm SmartFan Configuration	[Disabled]			
CPU Temperature System Temperature CPUFAN Speed SYSFAN Speed Vcore VDDSOC VCC3V	: +53 °C : +37 °C : 1538 RPM : N/A : +1.176 V : +1.024 V : +3.296 V	→←: Select Screen ↑↓: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save and Exit ESC: Exit		
Version 2.22.1282 Copyright (C) 2023 AMI				

CPU Fan Stopped Working Alarm

When the cooler is damaged or the APU fan connector is not connected even other factors affecting fan operation, the APU Fan will be stopped working. Meanwhile the system will automatically restart and appear prompt message (Shown below) during POST.

You can make a selection to enter the system.

Smart Fan Configuration

Aptio Setup - AMI					
Advanced					
SmartFan Configuration		Fan Mode Setting			
CPUFan Mode Setting Highest Fan Speed In Percentage 1st Temperature Threshold (°C) 2nd Fan Speed In Percentage	[SmartFan] 100 80 70				
2nd Temperature Threshold (°C) 3rd Fan Speed In Percentage 3rd Temperature Threshold (°C) 4th Fan Speed In Percentage 4th Temperature Threshold (°C) Lowest Fan Speed In Percentage	70 50 55 30 40	→←: Select Screen 11: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values			
System Fan Mode Setting Highest Fan Speed In Percentage 1st Temperature Threshold (°C) 2nd Fan Speed In Percentage 2nd Temperature Threshold (°C) 3rd Fan Speed In Percentage 3rd Temperature Threshold (°C) 4th Fan Speed In Percentage 4th Temperature Threshold (°C) Lowest Fan Speed In Percentage	[SmartFan] 100 80 70 70 50 55 30 40	F3: Optimized Defaults F4: Save and Exit ESC: Exit			
Version 2.22.1282 Copyright (C) 2023 AMI					

APUFan Mode Setting / System Fan Mode Setting

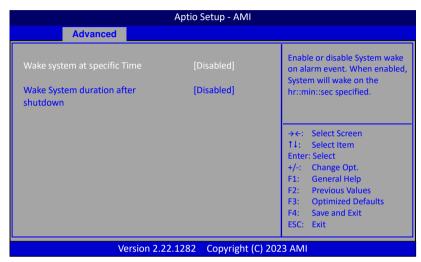
This item controls the speed of the various fans on the motherboard. SmartFan: When you want the speed of the fans automatically controlled based on temperature.

Manual By DutyCycle: To set the fan speed to a constant rate, the speed from 0% to 100%.

Manual By RPM: This item sets the fan speed at a fixed.

APU / System Temperature

Displays the current APU / System Temperature.


CPUFAN Speed / SYSFAN Speed

Displays the current APU / System Fan Speeds.

Vcore / VDDSOC / VCC3V

The current voltages are automatically detected and displayed by the system.

RTC Wake Settings

Wake system at specific Time

Enable or disable system wakeup on alarm event. When enabled, the related items will appear.

Options: Enabled, Disabled.

Wake up days of the week

This item allows you to select days of the week to wake up the system.

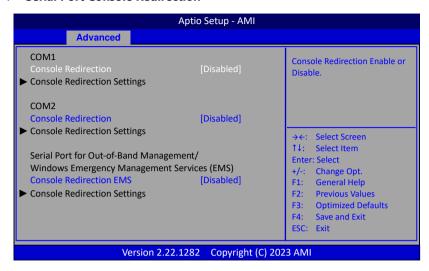
Options: Every day, Selective.

Wake up hour / Wake up minute

This item allows you to set the system to wake up at the hr:min specified.

Wake System duration after shutdown

When enabled, system will wake up at current time + Increment in minutes(s) after shutdown. When enabled, the related items will appear.


Options: Enabled, Disabled.

Duration (minute)

This item allows you to set duration time to wake system.

Options: 1 ~ 30.

Serial Port Console Redirection

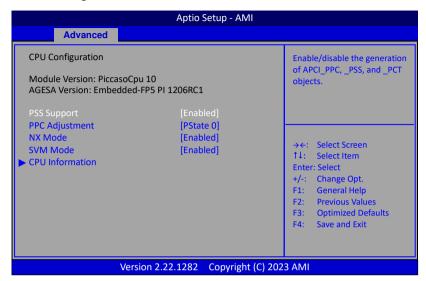
COM1 Console Redirection

Enable or disable console redirection for COM1. When enabled, the related items will appear.

Options: Enabled, Disabled.

COM2 Console Redirection

Enable or disable console redirection for COM2. When enabled, the related items will appear.


Options: Enabled, Disabled.

Console Redirection EMS

Enable or disable console redirection for EMS. When enabled, the related items will appear.

Options: Enabled, Disabled.

▶ CPU Configuration

PSS Support

 ${\tt Enable/disable\ the\ generation\ of\ APCI_PPC,\ _PSS,\ and\ _PCT\ objects.}$

Options: Enabled, Disabled.

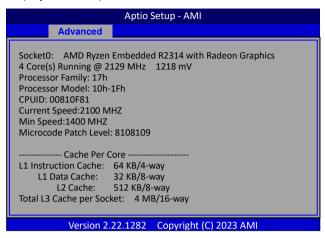
PPC Adjustment

Allows you to adjust _PPC objest.
Options: PState 0, PState 1, PState 2.

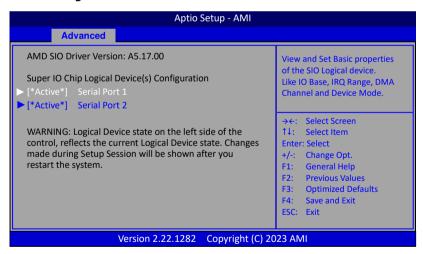
NX Mode

Enable or disable No-execute page protection function.

Options: Enabled, Disabled.

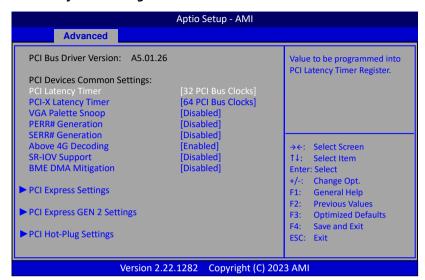

SVM Mode

Enables the CPU SVM (Secure Virtual Machine) function.


Options: Enabled, Disabled.

► CPU Information

Displays current processor information.


SIO Configuration

[*Active*] Serial Port 1/[*Active*] Serial Port 2

View and Set Basic properties of the SIO Logical device. Like IO Base, IRQ Range, DMA Channel and Device Mode.

► PCI Subsystem Settings

PCI Latency Timer

Value to be programmed into PCI Latency Timer Register.

Options: 32 PCI Bus Clocks, 64 PCI Bus Clocks, 96 PCI Bus Clocks,

128 PCI Bus Clocks, 160 PCI Bus Clocks, 192 PCI Bus Clocks,

224 PCI Bus Clocks, 248 PCI Bus Clocks.

PCI-X Latency Timer

Value to be programmed into PCI-X Latency Timer Register.

Options: 32 PCI Bus Clocks, 64 PCI Bus Clocks, 96 PCI Bus Clocks,

128 PCI Bus Clocks, 160 PCI Bus Clocks, 192 PCI Bus Clocks,

224 PCI Bus Clocks, 248 PCI Bus Clocks.

VGA Palette Snoop

Enable or disable VGA Palette Registers Snooping.

Options: Enabled, Disabled.

PERR# Generation

Enable or disable PCI device to generate PERR#.

Options: Enabled, Disabled.

SERR# Generation

Enable or disable PCI device to generate SERR#.

Options: Enabled, Disabled.

Above 4G Decoding

Enable or disable 64bit capable device to be decoded in above 4G address space (only if system supports 64bit PCI decoding).

Options: Enabled, Disabled.

SR-IOV Support

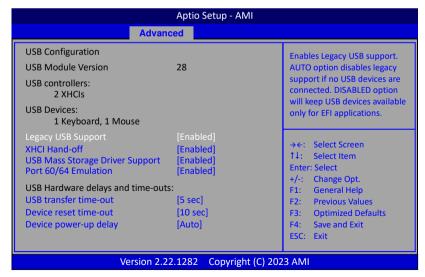
If system has SR-IOV capable PCIe devices, this option enables or disables Single Root IO Virtualization support.

Options: Enabled, Disabled.

BME DMA Mitigation

Re-enable bus master attribute disabled during PCI enumeration for PCI bridges after SMM locked.

Options: Enabled, Disabled.


PCI Express Settings

PCI Express GEN 2 Settings

PCI Hot-Plug Settings

These fields are for enable or disable PCI Express Devices related ordering.

USB Configuration

Legacy USB Support

Allows you to select legacy support for USB devices.

Enabled: Enables Legacy USB support.

Disabled: Keep USB devices available only for EFI application.

Auto: Disables legacy support if no USB devices are connected.

XHCI Hand-off

This is a workaround for OSes without XHCI hand-off support. The XHCI ownership change should be claimed by XHCI driver.

Options: Enabled, Disabled.

USB Mass Storage Driver Support

Allows you to enable or disable USB Mass Storage Driver support.

Options: Enabled, Disabled.

Port 60/64 Emulation

Enable I/O port 60h/64h emulation support. This should be enabled for the complete USB keyboard legacy support for non-USB aware OSes.

Options: Enabled, Disabled.

USB transfer time-out

The time-out value for control, bulk, and interrupt transfers.

Options: 1 sec, 5 sec, 10 sec, 20 sec.

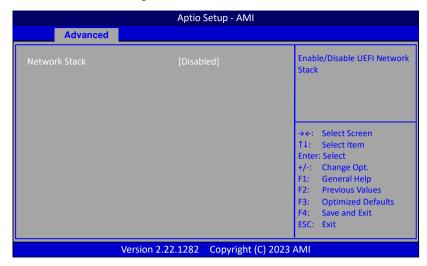
Device reset time-out

Sets USB mass storage devices start unit command time-out.

Options: 10 sec, 20 sec, 30 sec, 40 sec.

Device power-up delay

Maximum time the device will take before it properly reports itself to the Host controller. 'Auto' uses default values: for a Root port it is 100ms, for a Hub port the delay is taken from Hub descriptor.


Options: Auto, Manual.

Device power-up delay in seconds

This item is used to set a wait time in seconds for device power-up delay.

Options: 1 ~ 40.

Network Stack Configuration

Network Stack

This item is used for network boot in UEFI mode. When enabled, the related items will appear.

Options: Enabled, Disabled.

Ipv4 PXE Support

This item is used to enable or disable the Ipv4 PXE boot support. If disabled, Ipv4 PXE boot option will not be available.

Options: Enabled, Disabled.

Ipv4 HTTP Support

This item is used to enable or disable the Ipv4 HTTP boot support. If disabled, Ipv4 HTTP boot option will not be available.

Options: Enabled, Disabled.

Ipv6 PXE Support

This item is used to enable or disable the Ipv6 PXE boot support. If disabled Ipv6 PXE boot option will not be available.

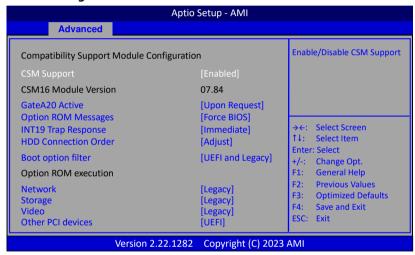
Options: Enabled, Disabled.

Ipv6 HTTP Support

This item is used to enable or disable the Ipv6 HTTP boot support. If disabled, Ipv6 HTTP boot option will not be available.

Options: Enabled, Disabled.

PXE boot wait time


This item is used to set a wait time in seconds for PXE boot. Press ESC key to abort the PXE boot.

Options: 0~5 sec.

Media detect count

Number of times presence of media will be checked.

CSM Configuration

CSM Support

This item allows enable or disable the CSM (Compatibility Support Module) configuration.

Options: Enabled, Disabled.

GateA20 Active

This feature determines how Gate A20 is used to address memory above 1MB. Upon Request: GA20 can be disabled using BIOS services.

Always: Do not allow disabling GA20.

Option ROM Message

Sets display mode for Option ROM.

Force BIOS: To force to a BIOS-compatible output. This will show the option ROM messages.

Keep Current: To keep the current video mode. This will suppress option ROM

messages. Option ROMs requiring interactive inputs may not work properly in this mode.

INT19 Trap Response

This item allows BIOS reaction on INT19 trapping by option ROM.

Immediate: Execute the trap right away.

Postponed: Execute the trap during legacy boot.

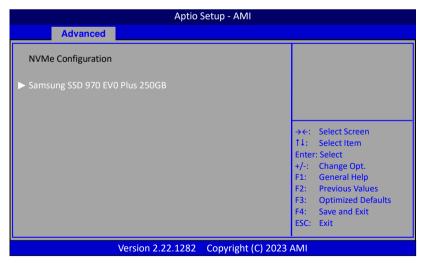
HDD Connection Order

Some OS require HDD handles to adjusted, i.e. OS is installed on drive 80h.

Options: Adjust, Keep.

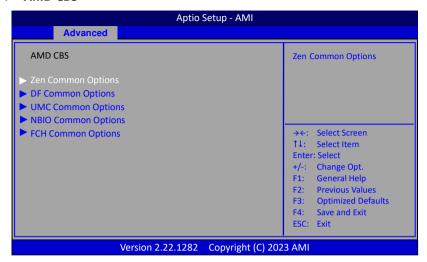
Boot option filter

This option controls what devices system can boot to UEFI or Legacy.


Options: UEFI and Legacy, Legacy only, UEFI only.

Option ROM execution

This field controls the execution policy for Network, Storage, Video and other PCI devices.


Options: Do not launch, Legacy, UEFI.

NVMe Configuration

This field is displayed the NVMe controller and Drive information.

AMD CBS

Zen Common Options

RedirectForReturnDis

From a workaround for GCC/C000005 issue for XV Core on CZ A0, setting MSRC001_1029 Decode Configuration (DE_CFG) bit 14 [DecfgNoRdrctForReturns] to 1.

Options: Auto, 1, 0.

L2 TLB Associativity

Allows you set the L2 TLB Associativity. 0 – L2 TLB ways [11:8] are fully associative. 1 – L2 TLB ways [11:8] are 4K ony.

Options: Auto, 1, 0.

Platform First Error Handing

Allows you enable or disable PFEH, clock individual banks, and mask deferred error interrupts from each bank.

Options: Enabled, Disabled, Auto.

Core Performance Boost

Allows you set the Core Performance Boost.

Options: Disabled, Auto.

Global C-State Control

Allows you controls IO based C-State generation and DF C-states.

Core/Thread Enablement

Allows you set the Core/Thread Enablement. S3 is NOT SUPPORTED on systems where cores/threads have been removed/disabled.

Options: Disagree, Agree.

Streaming Stores Control

Allows you enable or disable the streaming stores functionality.

Options: Enabled, Disabled, Auto.

Enable IBS

When IBS is enabled, SpecLockMap and Stack Engine are disabled.

Options: Enabled, Disabled, Auto.

RPMC Control

Allows you enable or disable the RPMC function. Auto is Keep default behavior.

Options: Enabled, Disabled, Auto.

DF Common Options

DRAM scrub time

Provide a value that is the number of hours to scrub memory.

Options: Disabled, 1 hour, 4 hours, 8 hours, 16 hours, 24 hours, 48 hours, Auto

Redirect scrubber control

Allows you set Redirect scrubber control.

Options: Enabled, Disabled, Auto.

Disable DF sync flood propagation

Allows you set sync flood propagation.

Options: Sync flood disabled, Sync flood enabled, Auto.

GMI encryption control

Allows you control GMI link encryption.

Options: Enabled, Disabled, Auto.

XGMI encryption control

Allows you control XGMI link encryption.

Options: Enabled, Disabled, Auto.

CC6 memory region encryption

Allows you control whether or not the CC6 save/restore memory is encrypted.

Location of private memory regions

Controls whether or not the private memory regions (PSP, SMU and CC6) are at the top of DRAM or distributed. Note that distributed requires memory on all dies, it will always be at the top of DRAM if some dies don't have memory regardless of this option's setting.

Options: Distributed, Consolidated, Auto.

System probe filter

Controls whether or not the probe filter is enabled. Has no effect on parts where the probe filter is fuse disabled.

Options: Enabled, Disabled, Auto.

Memory interleaving

Controls fabric level memory interleaving. Note that channel, die and socket has requirements on memory populations and it will be ignored if the memory doesn't support the selected option.

Options: None, Channel, Die, Socket, Auto.

Memory interleaving size

Controls the memory interleaving size. This determines the starting address of the interleave (bit 8, 9, 10, or 11).

Options: 256 Bytes, 512 Bytes, 1 KB, 2KB, Auto.

Channel interleaving hash

Controls whether or not the address bits are hashed during channel interleave mode. This field should not be used unless the interleaving is set to channel and the interleaving size is 256 or 512 bytes.

Options: Enabled, Disabled, Auto.

DF C-state control

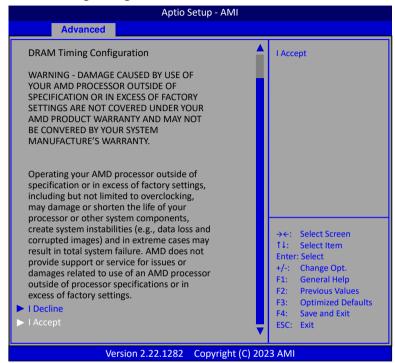
Allow you enable or disable DF C-state.

Options: Enabled, Disabled, Auto.

XGMI DLWM control

Controls the XGMI dynamic link width management feature.

Options: Enabled, Disabled, Auto.


Freeze DF module queues on error

Controls the Freeze DF module queues on error feature.

UMC Common Options

DDR4 Common Options

DRAM Timing Configuration

Select "I Accept" item to enter the overclock function.

Overclock

When set to "Enabled", allow you to individually set overclock parameters.

Options: Auto, Enabled.

Memory Clock Speed

Recommend to select and follow below items option only.

1200MHz → 2400MHz 1600MHz → 3200MHz

Note:

Please attention DRAM timing configuration "WARNING" description. If there is no boot after setting, please to do CMOS clear

DRAM Control Configuration

DRAM Power Options

Power Down Enable

Allows you to enable or disable DDR power down mode.

Options: Enabled, Disabled, Auto.

Gear Down Mode

Allows you to enable or disable gear down mode.

Options: Enabled, Disabled, Auto.

Data Mask

Allows you to enable or disable data mask.

Options: Enabled, Disabled, Auto.

CAD Bus Configuration

CAD Bus Timing User Controls

Drive strength on CAD bus signals to Auto or Manual.

Options: Manual, Auto.

CAD Bus Timing User Controls

Specify the mode for drive strength to Auto or Manual.

Options: Manual, Auto.

Data Bus Configuration

Data Bus Configuration User Controls

Specify the mode for drive strength to Auto or Manual.

Options: Manual, Auto.

Common RAS

Data Poisoning

Enable or disable data poisoning: UMC_CH::EccCtrl[UcFatalEn]

UMC_CH::EccCtrl[WrEccEn] should be enabled/disabled together.

Options: Enabled, Disabled, Auto.

ECC Configuration

DRAM ECC Symbol Size

Use this option to select the DRAM ECC Symbol Size.

Options: x4, x8, Auto.

DRAM ECC Enable

Use this option to enable/disable DRAM ECC. Auto will set ECC to enable.

Disable Memory Error Injection

Use this option to control Disable Memory Error Injection.

Options: False, True.

DRAM Memory Mapping

Chip select Interleaving

Interleave memory blocks across the DRAM chip selects for node 0.

Options: Disabled, Auto.

BankGroupSwap

Use this option to control BankGroupSwap.

Options: APU, CPU, Disabled, Auto.

BankGroupSwapAlt

Use this option to control BankGroupSwapAlt.

Options: Enabled, Disabled, Auto.

Address Hash Bank

Use this option to enable or disable bank address hashing.

Options: Enabled, Disabled, Auto.

Address Hash CS

Use this option to enable or disable CS address hashing.

Options: Enabled, Disabled, Auto.

Memory MBIST

MBIST Enable

Use this option to enable or disable Memory MBIST.

Options: Enabled, Disabled, Auto.

▶ NBIO Common Options

GFX Configuration

Integrated Graphics Controller

Use this option to enable or disable Integrated Graphics Controller.

Options: Disabled, Force, Auto.

UMA Mode

Allows you to select the UMA mode.

Options: Auto, UMA_SPECIFIED, UMA_AUTO.

UMA Frame buffer Size

This item will only appear when "UMA Mode" item is set to "UMA_SPECIFIED" option. It controls the amount of system memory that is allocated to the integrated graphics

processor.

Options: Auto, 64M, 80M, 96M, 128M, 256M, 384M, 512M, 768M, 1G, 2G, 3G, 4G, 8G, 16G.

Display Resolution

This item will only appear when "UMA Mode" item is set to "UMA_AUTO" option. It allows you select the display resolution.

Options: 1920x1080 and below, 2560x1600, 3840x2160, Auto.

UMA Version

Allows you to select the UMA legacy version.

Options: Legacy, Non-Legacy, Hybrid Secure, Auto.

UMA Above 4G

If requested UMA frame buffer size can't be fit under 4GB or the system has enough available memory above 4GB, this option may be set to TURE to allow UMA frame buffer size to be allocated successfully.

Options: Disabled, Enabled, Auto

DP/HDMI Audio

Allows you to enable or disable the Integrated HD Audio Controller. Options: Disabled, Enabled, Auto

NB Configuration

IOMMU

This item allows you to enable or disable the IOMMU (Input/Output Memory Management Unit).

Options: Disabled, Enabled, Auto.

PCIe Configuration

PSPP Policy

This item allows you to select PCIe speed power policy. Options: Disabled, Performance, Balanced, Power Saving, Auto.

System Configuration

This item allows you to select the System Configuration. Not all TDP/System configurations listed can be applied: Check the Infrastructure Roadmap Document on DevHub (Infrastructure tab). The Auto configuration will be applied in case an unsupported system configuration (lower or upper out of bound) is selected. The Auto configuration is the

upper/highest Embedded system configuration supported for an Embedded Rayzen part.

Options:

12W POR Configuration 15W POR Configuration 25W POR Configuration 35W POR Configuration Auto

Warning: Select System Configuration may cause the system to hang, as some System Configuration may not be supported by your OPN.

System Temperature Tracking

This item allows you to select the System Temperature Tracking.

[0=disabled; 1= enabled]

Options: Auto, Disabled, Enabled.

FCH Common Options

AC Power Loss Options

Ac Loss Control

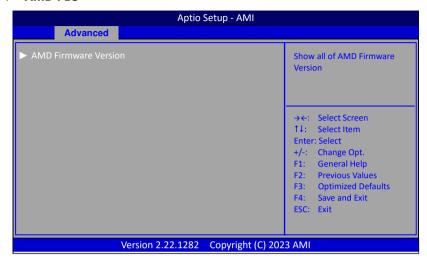
Enables your computer to automatically restart or return to its last operating status after power returns from a power failure.

Options: Always Off, Always On, Previous.

I2C Configuration Options

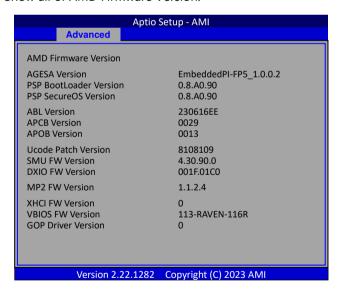
I2C 0 Enable / I2C 1 Enable / I2C 2 Enable

This item allows you to select the I2C Configuration.


Options: Auto, Disabled, Enabled.

System Control

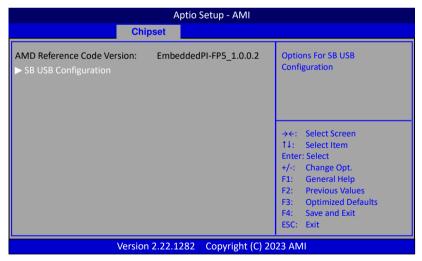
Toggle All PwrGood On Cf9


This item allows you to select the Toggle All PwrGood On Cf9 cotrol. Options: Auto, Disabled, Enabled.

AMD PBS


► AMD Firmware Version

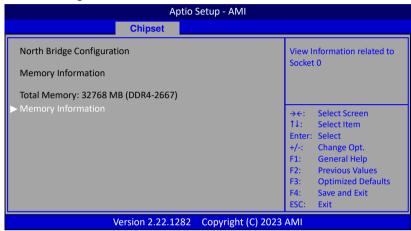
Show all of AMD Firmware Version.



3-5 Chipset Menu

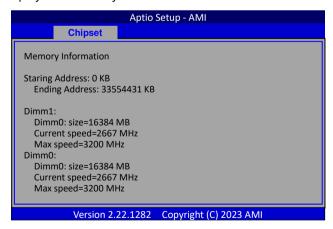
The chipset menu items allow you to change the advanced chipset settings. Press <Enter> to display the sub-menu.

South Bridge

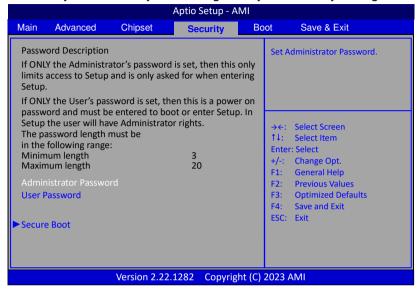

► SB USB Configuration

USB2.0 Port (Black, Top) / USB2.0 Port (Black, Bottom) / USB3.2 Port (Blue, Top) / USB3.2 Port (Blue, Bottom) /

USB3.2 TYPE-C Port / USB2.0 HUB


Allows you to enable or disable USB ports. Options: Enabled, Disabled.

North Bridge


▶Memory Information

Displays the memory related information.

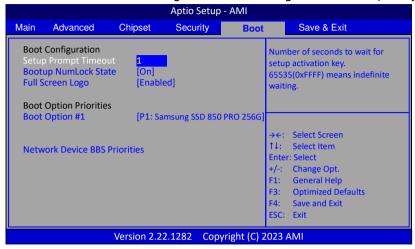
3-6 Security Menu

The Security menu allows you to change the system security settings.

Administrator Password

This function is used to set, change or delete the Administrator password. If there is already a password installed, the system asks for this first. To clear a password, simply enter nothing and acknowledge by pressing Return. To set a password, enter it twice and acknowledge by pressing Return. The password must be 3 to 20 characters long.

User Password


This function is used to set, change or delete the User password. If there is already a password installed, the system asks for this first. To clear a password, simply enter nothing and acknowledge by pressing Return. To set a password, enter it twice and acknowledge by pressing Return. The password must be 3 to 20 characters long.

Secure Boot

Secure Boot feature is Active if Secure Boot is Enabled. Platform Key (PK) is enrolled and the system is in user mode. The mode change requires platform reset.

3-7 Boot Menu

The Boot menu is used to configure the boot settings and the boot priority.

Setup Prompt Timeout

This is used to set an additional time the POST should wait for the operator to press the key to enter setup. The time is entered in seconds.

Bootup NumLock State

Selects the state of the keyboard's Numlock function after POST.

Options: On, Off.

Full Screen Logo

This item allows you to enable or disable the full screen logo display feature.

Options: Enabled, Disabled.

Boot Option Priorities

These items specify the boot device priority sequence of the available devices.

The number of device items that appears on the screen depends on the number of devices installed in the system.

Hard Drive BBS Priorities

Allows you to configure the boot order for a specific Hard Drive device class.

Network Device BBS Priorities

Allows you to configure the boot order for a specific Network device class.

3-8 Save & Exit Menu

The Save & Exit menu allows you to load the optimal default values for BIOS, and save or discard your changes to the BIOS items.

Save Options

Allows you to save the options you made.

Save Changes and Reset

This resets system after saving the changes.

Discard Changes and Reset

This resets system without saving the changes.

Save Changes

Allows you to save the changes you made.

Load Optimized Defaults

The Load default values are the factory settings of this motherboard.

Boot Override

This group of functions includes a list, each of them corresponding to one device within the boot order. Select a drive to immediately boot that device regardless of the current boot order.

Launch EFI Shell from filesystem device

Attempts to launch EFI Shell application (Shellx64.efi) form one of the available filesystem devices.

Chapter 4 Firmware and Driver Installation

After the operating system has been installed, you need to install the software and drivers for this mainboard. The OSPI firmware may also need to be updated.

Please visit http://www.sapphiretech.com or http://www.amd.com to download the latest driver.

Chapter 5 Chassis Installation

Follow the instructions below to install the mainboard into the chassis.

Remove the 2 screws on back of chassis to open the cover of chassis.

Remove the 2 screws of SATA bracket to take out the SATA bracket.

- a. Place the I/O shield on back of chassis first.
- b. Identify the I/O connector location and install the mainboard into the chassis.

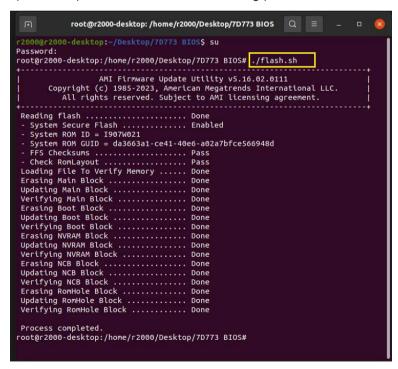
Fasten mainboard into the chassis with 4 accompanied screws of chassis.

- a. Connect the power button cable to front panel header (CFP1) of mainboard. Need to be connected to the corresponding headers separately.
- b. Connect the USB cable to USB2.0 header (USB2-A) of mainboard.

Fasten SATA bracket to chassis with 2 screws of SATA bracket.

Fasten chassis cover to chassis with 2 screws of chassis.

The system installation is complete.


Appendix A: BIOS Update

Please refer the following steps for BIOS update.

- 2. After downloading the compressed file, there are four files upon extracting the archive.

afulnx_64	2024/2/2 上午 07:11	檔案	1,160 KB
flash.sh	2024/2/2 上午 07:11	SH 檔案	1 KB
☐ I907W021.rom	2024/2/2 上午 07:11	ROM 檔案	8,192 KB
readme	2024/2/2 上午 07:11	文字文件	6 KB

- Open a terminal window in this folder and execute the command # sudo ./flash.sh
- 4. Update completed, as shown in the following picture.

Appendix B: Qualified Vendors List

Qualified Vendors List for Memory modules

DDR4 2133 Memory modules

					DIMM soci	ket support
Vendor	Module P/N	Size	Component	Voltage	1 DIMM	2 DIMM
ADATA	AD4S2133W4G15-BSSD	4GB	K4A4GO85WD	1.2V	✓	✓
GeIL	GS44GB2133C15SC	4GB	GelL 512X8DDR4	1.2V	✓	✓
GOODRAM	GR4S4GB213S8C	4GB	K4A4GO85WE	1.2V	✓	✓
Innodisk	M4S0-4GSSNCRG	4GB	K4A4GO85WD	1.2V	✓	✓
SMART	SH5126SO451851-HA	4GB	H5AN4G8NAFR TFC	1.2V	✓	✓
Transcend	TS512MSH64V1H	4GB	K4A4GO85WD	1.2V	✓	✓
Transcend	TS512MSH72V1H ECC	4GB	K4A4GO85WD	1.2V	✓	✓
TEAM	TED44G2133C15-SBK	4GB	T4D5128HT-21	1.2V	✓	✓
GelL	GS48GB2133C15SC	8GB	GelL 512X8DDR4	1.2V	✓	✓
Innodisk	M4S0-8GSSOCRG	8GB	K4A4GO85WD	1.2V	✓	✓
SMART	SH1026SO451851-HA	8GB	H5AN4G8NAFR TFC	1.2V	✓	✓
SMART	SH1026SO410851-SB	8GB	K4A8GO8 5WB	1.2V	✓	✓
Transcend	TS1GSH64V1H	8GB	K4A4GO8 5WD	1.2V	✓	✓
SMART	SH2046SO410851-HM	16GB	H5AN8G8NMFR TFC	1.2V	✓	✓

DDR4 2400 Memory modules

	Module P/N				DIMM socket support	
Vendor		Size	Component	Voltage	1 DIMM	2 DIMM
SMART	SH5126SO451672-HA	4GB	H5AN8G8NAFR UHC	1.2V	✓	✓
SMART	SH5127SO451872-HA ECC	4GB	H5AN4G8NAFR UHC	1.2V	✓	✓
GOODRAM	GR4S4G240S8C-SERC	4GB	SEC 819 K4A4G08	1.2V	✓	✓
Kingston	CBD24D4S7S8MB-4	4GB	7CB75 D9TGG	1.2V	✓	✓
SAMSUNG	M471A5244CB0-CRC	4GB	SEC 801 K4A8G16	1.2V	✓	✓
GOODRAM	GR4S8G240S8C-SBRC	8GB	SEC 731 K4A8G08	1.2V	✓	✓
Kingston	CBD24D4S7S8MB-8	8GB	6RB77 D9TGG	1.2V	✓	✓
Kingston	CBD24D4S7S8ME-8	8GB	7QE75 D9VPP	1.2V	✓	✓
Kingston	KVR24S17S8/8	8GB	7SE75 D9VPP	1.2V	✓	✓
SMART	SH1026SO410872-HA	8GB	H5AN8G8NAFR UHC	1.2V	✓	✓
SMART	SH2046SO410872-HM	16GB	H5AN8G8NAFR UHC	1.2V	✓	✓
Kingston	KTL-TN424E/16GB ECC	16GB	H5AN8G8NAFR UHC	1.2V	✓	✓

DDR4 2666 Memory modules

Manadan	Mandada D/N	C:	Comment	Voltage	DIMM socket support	
Vendor	Module P/N	Size	Size Component V		1 DIMM	2 DIMM
TEAMGROUP	TED44G2666C19-SBK	4GB	Team Elite TD5128KT-266	1.2V	✓	✓
SMART	SH1026SO410893-SC	8GB	SWT0A10805383FC175	1.2V	✓	✓
SAMSUNG	M471A1K43CB1-CTD	8GB	SEC 843 K4A8608 5WC BCTD	1.2V	✓	✓
KINGSTON	KVR26S19D8/32	32GB	Micron ODB45 D9XPF	1.2V	√	√
Micron	MTA16ATF4G64HZ-2G6B2	32GB	Micron 9FB45 D9XPF	1.2V	✓	✓

➤ DDR4 2933 Memory modules

Manadan	Module P/N	Size	6	\	DIMM soci	ket support
Vendor			Component	Voltage	1 DIMM	2 DIMM
Kingston	HX429S17IB2K2/16	8GB	7XE75 D9VPP	1.2V	✓	✓

DDR4 3200 Memory modules

,	z zzwiele z wedanes							
Van den	M = -ll = D/N	Cino	Component	Voltage	DIMM so	cket support		
Vendor	Module P/N	Size	Size Component Vol		1 DIMM	2 DIMM		
* GOODRAM	GR4S4G320S8C-SERC	4GB	SEC 816 K4A4G085WE BCRC	1.2V	✓	✓		
Micron	MTA4ATF51264HZ-3G2E1	4GB	7ZE75 D9WFJ	1.2V	✓	✓		
Micron	MTA8ATF1G64HZ-3G2E1	8GB	7XE75 D9WFL	1.2V	✓	✓		
Kingston	HX432S20IB2K2/16	8GB	7XE75 D9VPP	1.2V	✓	✓		
* Apacer	AS08GGB32CLYBGD	8GB	SEC 819 K4A8G08	1.2V	✓	✓		

^{*} The default recognized clock is not 3200MHz, running at 3200MHz requires manual configuration in BIOS. (Advanced > AMD CBS > UMC Common Options > DDR4 Common Options > DRAM Timing Configuration > Overclock > Memory Clock Speed)

Qualified Vendors List for SSD

➤ M.2 SSD

Vander	Model / PN	Interface	Capacity
2280 Form factor <n< td=""><td>VME></td><td></td><td></td></n<>	VME>		
ADATA	XPG GAMMIX S70 BLADE	PCIE Gen 4 x4	1TB
Kingston	NV2 SNV2S250G	PCIe Gen 4 x4	250GB
Samsung	PM9B1 MZ-VL41T00	PCle Gen 4 x4	1TB
Teamgroup	T-FORCE TMBFPL250G	PCIe Gen 4 x4	250GB
Kingston	KC1000 SKC1000/240G NVMe	PCIe Gen 3 x4	240GB
Kingston	KC2500 SKC2500M8250G	PCIe Gen 3 x4	250GB
PLEXTOR	PX-128M8PeGN	PCIe Gen 3 x4	128GB
Samsung	970 EVO Plus MZ-V7S250	PCIe Gen 3 x4	250GB
Samsung	970 PRO MZ-V7P512	PCIe Gen 3 x4	512GB
Toshiba	KXG50ZNV256G	PCle Gen 3 x4	256GB
Western Digital	SN720 SDAPNTW-256G-1016	PCIe Gen 3 x4	256GB
Kingston	A1000 SA1000M8/480G	PCle Gen 3 x2	480GB
LITEON	PP3-8D128	PCIe Gen 3 x2	128GB
2280 Form factor <sa< td=""><td>ATA></td><td></td><td></td></sa<>	ATA>		
BIWN	G6312 CNF82DS 1805-128	SATA	128GB
Crucial	CT128M550SSD4	SATA	128GB
Intel	SSDSCKGW080A4	SATA	80GB
innodisk	M.2 (S80) 3TE7 DEM28-64GDK1EC1DF	SATA	64GB
Intel	SSDSCKGW080A4	SATA	80GB
Kingston	SUV500M8/240G	SATA	240GB
Micron	1100 MTFDDAV256TBN	SATA	256GB
Micron	1100 MTFDDAV512TBN	SATA	512GB
PLEXTOR	PX-128M6G-2280	SATA	128GB
SanDisk	Z400S SD8SNAT-128G-1002	SATA	128GB
SanDisk	Z400S SD8SNAT-256G-1002	SATA	256GB
SanDisk	X400 SD8SN8U-512G-1122	SATA	512GB
Samsung	MZ-NLN128C	SATA	128GB
Samsung	MZ-N5E250	SATA	250GB
Western Digital	WDS120G1G0B-00RC30	SATA	120GB

> 2.5" SSD

Vander	Model / PN	Interface	Capacity
ADVANTECH	SQF-S25M8-128G-S8C	SATA	128GB
ADATA	S510 AS510S3-60GB	SATA	60GB
LITEON	PH6-CE120G	SATA	120GB
Intel	SSDSC2CW120A3	SATA	120GB
Kingston	SVP100S264G	SATA	64GB
Kingston	SHF37A/120GG	SATA	120GB
Kingston	SUV500/240G	SATA	240GB
Micron	M500 MTFDDAK120MAV	SATA	120GB
Micron	M510 MTFDDAK256MAZ	SATA	256GB
SanDisk	X110 SD6SB1M064G1022I	SATA	64GB
SanDisk	Z400s SD8SBAT-128G	SATA	128GB
SanDisk	Z400s SD8SBAT-256G	SATA	256GB
Samsung	850 PRO MZ-7KE256	SATA	256GB

Qualified Vendors List for WIFI+BT

Vander	Model
Intel	AX210 WIiFi 6E
Intel	9260NGW
Intel	8260NGW
Intel	3165NGW
MediaTek	MT7922 WIFI-6E (RZ616)
Realtek	RTL8852BE

Appendix C: Expansion Board & Connector

Expansion Connector

The expansion connector is high-speed interface for specific peripherals such as cameras or high speed networking. The signals and pin numbers of connector are provided in the following Table.

Туре	Signal	Count
GTYP	High Speed transceivers GTYP x4 Tx/Rx data lines + RefClk	20 (10 diff-pairs)
XPIO	User configurable XPIO	54 (27 diff-pairs)
HDIO	User configurable HDIO	22
XPIO VCCO	User XPIO bank supply voltage	2
HDIO VCCO	User HDIO bank supply voltage	2
PWR_EN	VCCO power sequence control	1
1-Wire	Board-ID 1-Wire PROM	1
3V3	3.3V supply to daughtercard	4

Connector Power

The expansion connector includes three power supplies for providing user flexibility in the definition of the FPGA I/O rails as well as providing power to the daughtercard without requiring a separate cable. The expansion connector power pins are described below table

Connector Power	Source → Sink	Rating
3V3	Base board → Daughtercard	3.3V @ 1A
XPIO_VCCO	Daughtercard → Base board	1.0-1.5V @ 500mA
HDIO_VCCO	Daughtercard → Base board	1.8-3.3V @ 500mA

> Absolute Maximum Ratings

Symbol	Description	Min	Max
VCCO_XPIO	XPIO bank 7# output driver power supply	-0.5V	1.65V
VCCO_HDIO	HDIO bank 3# output driver power supply	-0.5V	3.63V

Recommended Operating Conditions

Symbol	Description	Min	Тур	Max
	XPIO bank 7# output driver power supply Includes VCCO of 1.0V, 1.1V, 1.2V, 1.35V, 1.5V at ±5%	0.950V	-	1.575V
1 V((() HI)()	HDIO bank 3# output driver power supply Includes VCCO of 1.8V, 2.5V at ±5%, and 3.3V at +3/–5%	1.710V	-	3.4V

Power Enable (VCC CARD EN)

A power enable (VCC_CARD_EN) signal is routed from the Versal device to the expansion card to be used by the local expansion card local power supplies. This signal used to gate the HDIO_VCCO and XPIO_VCCO power supplies. The HDIO_VCCO and XPIO_VCCO power supplies should remain low until the PWR_EN signal goes high.

1-Wire ID(LPD MIO4 GPIO)

The 1-Wire interface is to be used to implement an expansion card ID mechanism. A 1-wire compliant EEPROM is to be implemented on the expansion card which will capture board name and revision. This information can then be used by the Versal device to ensure PL bitstream to expansion card alignment.

The interface is powered through its I/O pin which will be connected to the 1.8V MIO through a pull-up resistor. An example device is the Microchip AT21CS01/AT21CS11.

DC Input and Output Levels

Operating Conditions

Symbol	Description	Min	Тур	Max
VCC_CARD_EN	PSIO BANK5# PMC MIO31	1.71V	1.8V	1.89V
LPD_MIO4_GPIO	PSIO BANK5# LPD MIO4	1.71V	1.8V	1.89V
GTYP	GTYP transceiver	1.164V	1.2V-	1.236V

PSIO BANK : Input and Output Levels

I/O	VIL		VIH		VOL	VOH	IOL	IOH
Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
LVCMOS18	-0.300	0.63	1.17	1.83	0.45	1.35	4, 8, or 12	4, 8, or 12

> SelectIO standard for HDIO Banks : DC Input and Output Levels

I/O Standard ^{1, 2}	V _{IL}		VII	н	V _{OL}	V _{OH}	I _{OL}	I _{OH}
1/O Standard "	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
HSTL_I_18	-0.300	50% V _{CCO} - 0.100	50% V _{CCO} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8.0	-8.0
LVCMOS18	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} - 0.450	Note 3	Note 3
LVCMOS25	-0.300	0.700	1.700	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	Note 3	Note 3
LVCMOS33	-0.300	0.800	2.000	3.400	0.400	V _{CCO} - 0.400	Note 3	Note 3
LVTTL	-0.300	0.800	2.000	3.400	0.400	2.400	Note 3	Note 3
SSTL18_I	-0.300	50% V _{CCO} - 0.125	50% V _{CCO} + 0.125	V _{CCO} + 0.300	V _{CCO} /2 - 0.470	V _{CCO} /2 + 0.470	8.0	-8.0

Notes:

- 1. Tested according to relevant specifications.
- Standards specified using the default I/O standard configuration. For details, see the Versal Adaptive SoC SelectIO Resources Architecture
 Manual (AM010).
- 3. Supported drive strengths of 4, 8, or 12 mA in HDIO banks.

> SelectIO standard for XPIO Banks : DC Input and Output Levels

I/O Standard ^{1, 2, 3}		V _{IL}	VI	н	V _{OL}	V _{OH}	I _{OL}	I _{OH}
1/O Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
HSTL_I	-0.300	50% V _{CCO} - 0.100	50% V _{CCO} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	5.8	-5.8
HSTL_I_12	-0.300	50% V _{CCO} - 0.080	50% V _{CCO} + 0.080	V _{CCO} + 0.300	25% V _{CCO}	75% V _{CCO}	4.1	-4.1
HSUL_12	-0.300	50% V _{CCO} - 0.130	50% V _{CCO} + 0.130	V _{CCO} + 0.300	20% V _{CCO}	80% V _{CCO}	0.1	-0.1
LVCMOS12	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	Note 4	Note 4
LVCMOS15	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} - 0.450	Note 5	Note 5
LVDCI_15	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} - 0.450	7.0	-7.0
SSTL12	-0.300	50% V _{CCO} - 0.100	50% V _{CCO} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	8.0	-8.0
SSTL135	-0.300	50% V _{CCO} - 0.090	50% V _{CCO} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	9.0	-9.0
SSTL15	-0.300	50% V _{CCO} - 0.100	50% V _{CCO} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.175	V _{CCO} /2 + 0.175	10.0	-10.0

Notes:

- 1. Tested according to relevant specifications.
- Standards specified using the default I/O standard configuration. For details, see the Versal Adaptive SoC SelectIO Resources Architecture Manual (AM010).
- 3. POD10 and POD12 DC input and output levels are shown in Table 11, Table 16, and Table 17.
- 4. Supported drive strengths of 2, 4, 6, or 8 mA in XPIO banks.
- 5. Supported drive strengths of 2, 4, 6, 8, or 12 mA in XPIO banks.

Complementary Differential SelectIO standard for HDIO Banks : DC Input and Output Levels

I/O Standard	V _{ICM} (V) ¹		V _{ID} (V) ²		V _{OL} (V) ³	V _{OH} (V) ⁴	I _{OL}	I _{OH}	
1/O Standard	Min	Тур	Max	Min	Max	Max	Min	mA	mA
DIFF_HSTL_I_18	0.300	0.900	1.425	0.100	-	0.400	V _{CCO} - 0.400	8.0	-8.0
DIFF_SSTL18_I	0.300	0.900	1.425	0.100	-	(V _{CCO} /2) - 0.47	(V _{CCO} /2) + 0.47	8.0	-8.0
LVDS_25	0.300	1.200	1.425	0.100	0.600	-	-	-	-
SUB_LVDS	0.500	0.900	1.300	0.070	-	-	-	-	-
LVPECL	0.300	1.200	1.425	0.100	0.600	-	ı	-	-
SLVS_400_25	0.070	0.200	0.330	0.140	0.450	-	-	-	-

Notes:

- 1. V_{ICM} is the input common mode voltage.
- 2. V_{ID} is the input differential voltage (Q \overline{Q}).
- 3. V_{OL} is the single-ended low-output voltage.
- 4. V_{OH} is the single-ended high-output voltage.

Complementary Differential SelectIO standard for XPIO Banks : DC Input and Output Levels

I/O Standard	1	V _{ID} (V) ²		V _{OL} (V) ³	V _{OH} (V) ⁴	I _{OL}	I _{OH}		
1/O Standard	Min	Тур	Max	Min	Max	Max	Min	mA	mA
DIFF_HSTL_I	0.680	V _{cco} /2	(V _{CCO} /2) + 0.150	0.100	-	0.400	V _{CCO} - 0.400	5.8	-5.8
DIFF_HSTL_I_12	0.400 x V _{CCO}	V _{cco} /2	0.600 x V _{CCO}	0.100	1	0.250 x V _{CCO}	0.750 x V _{CCO}	4.1	-4.1
DIFF_HSUL_12	(V _{CCO} /2) - 0.120	V _{cco} /2	(V _{CCO} /2) + 0.120	0.100	-	20% V _{CCO}	80% V _{CCO}	0.1	-0.1
DIFF_SSTL12	(V _{CCO} /2) - 0.150	V _{cco} /2	(V _{CCO} /2) + 0.150	0.100	-	(V _{CCO} /2) - 0.150	(V _{CCO} /2) + 0.150	8.0	-8.0
DIFF_SSTL135	(V _{CCO} /2) - 0.150	V _{cco} /2	(V _{CCO} /2) + 0.150	0.100	-	(V _{CCO} /2) - 0.150	(V _{CCO} /2) + 0.150	9.0	-9.0
DIFF_SSTL15	(V _{CCO} /2) - 0.175	V _{CCO} /2	(V _{CCO} /2) + 0.175	0.100	1	(V _{CCO} /2) - 0.175	(V _{CCO} /2) + 0.175	10.0	-10.0

Notes:

- 1. V_{ICM} is the input common mode voltage.
- 2. V_{ID} is the input differential voltage.
- 3. Vol. is the single-ended low-output voltage.
- 4. V_{OH} is the single-ended high-output voltage.

> Differential SelectIO standard for MIPI_DPHY : DC Input and Output Levels

I/O Standard	V _{ICM} (V) ¹		V _{ID} (V) ²		V _{ILHS} ³	V _{IHHS} ³	V _{OCM} (V) ⁴		V _{OD} (V) ⁵					
1/O Standard	Min	Тур	Max	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max
MIPI_DPHY for operation <1.5 GB/s ⁷	0.070	-	0.330	0.070	-	-	-0.040	0.460	0.150	0.200	0.250	0.140	0.200	0.270
MIPI_DPHY for operation at >1.5G GB/s ⁷	0.070	-	0.330	0.040	-	1	-0.040	0.460	0.150	0.200	0.250	0.140	0.200	0.270

Notes:

- 1. V_{ICM} is the input common mode voltage.
- V_{ID} is the input differential voltage (Q Q).
- 3. VIHHS and VILHS are the single-ended input high and low voltages, respectively.
- V_{OCM} is the output common mode voltage.
- V_{OD} is the output differential voltage (Q Q).
- 6. LVDS15 is specified in Table 18.
- High-speed option for MIPI_DPHY. The V_{ID} maximum is aligned with the standard's specification. A higher V_{ID} is acceptable as long as
 the V_{IN} specification is also met.

> GTYP Transceiver : DC Input and Output Levels

GTYP Transceiver DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units	
DV _{PPIN} Differential peak-to-peak input volta		>10.3125 Gb/s	150	- 22	1250	mV	
	(external AC coupled)	6.6 Gb/s to 10.3125 Gb/s	150		1250	mV	
		≤ 6.6 Gb/s	150		2000	mV	
V _{IN}	Single-ended input voltage. Voltage measured at the pin referenced to GND.	DC coupled V _{GTY_AVTT} = 1.2V	-200	121	V _{GTY_AVTT}	mV	
V _{CMIN}	Common mode input voltage	DC coupled V _{GTY_AVTT} = 1.2V	18754	2/3 V _{GTY_AVTT}	HE!	mV	
D _{VPPOUT}	Differential peak-to-peak output voltage ¹	Transmitter output swing is set to 11111	800	(5)	1953	mV	
V _{CMOUTDC}	Common mode output voltage: DC coupled (equation based) ²	When remote RX termination is floating	D _{VPPOUT} /2			mV	
		When remote RX is terminated to V _{RX_TERM} ³	V	V _{RX_TERM} /2 + D _{VPPOUT} /4			
V _{CMOUTAC}	Common mode output voltage: AC coupled	Equation based		D _{VPPOUT} /2		mV	
R _{IN}	Differential input resistance		(5)	100	ia.	Ω	
R _{OUT}	Differential output resistance	125	100	18	Ω		
T _{OSKEW}	Transmitter output pair (TXP and TXN) is	NTA.	1(7)	10	ps		
C _{EXT}	Recommended external AC coupling cap	pacitor ⁴	-	100	(9)	nF	

Notes:

- The output swing and pre-emphasis levels are programmable using the GTY and GTYP transceiver attributes discussed in the Versal Adaptive SoC GTY and GTYP Transceivers Architecture Manual (AM002) and can result in values lower than reported in this table.
- 2. Remote RX termination = GND is not supported.
- 3. VRX TERM is the remote RX termination voltage. VCMOUTDC VRXTERM should be less than 0.92V.
- 4. Other values can be used as appropriate to conform to specific protocols and standards,

> GTYP Transceiver Clock Output Level Specification

Symbol	Description	Conditions	Min	Тур	Max	Units
VOL	Output Low voltage for P and N	RT = 100Ω across P and N signals	100	-	330	mV
VOH	Output High voltage for P and N	RT = 100Ω across P and N signals	500	-	700	mV
VDDOUT	Differential output voltage (P-N), $P = High (N-P)$, $N = High$	RT = 100Ω across P and N signals	300	I	430	mV
VCMOUT	Common mode voltage	RT = 100Ω across P and N signals	300	_	500	mV

PCB Routing Constrains for Daughter Board

Signal name	impedance	Max Length	space	Length Matching and note
VCC_CARD_EN LPD_MIO4_GPIO HDIO[021]	50 ohm	5″	3H *	
GTYP_CLKP/N[01]	85 ohm	3"	5H*	Difference between P and N traces within a differential pair 0.75ps
GTYP_TXP/N[03]	85 ohm	3"	5H*	Difference between P and N traces within a differential pair 0.5ps Difference between differential pairs lane to lane <1250ps
GTYP_RXP/N[03]	85 ohm	3"	5H*	Difference between P and N traces within a differential pair 0.5ps Difference between differential pairs lane to lane <1250ps
XPIO_L[026]P/N	100 ohm	1.5"	5H*	Difference between P and N traces within a differential pair 0.5ps Note1

^{*} H is the distance to the nearest ground return plane.

Note1: Length Matching Routing Rule for XPIO with different defined

- For interfacing with PHYs with adjustable internal delays, skew between GEMx_TX_DATA[0:3]/GEMx_TX_CTRL and GEMx_TX_CLK should be within 50 ps.
- For interfacing with PHYs with adjustable internal delays, skew between GEMx_RX_DATA[0:3]/GEMx_RX_CTRL and GEMx_RX_CLK should be within 50 ps.
- 3. For interfacing with MIPI. Skew between clock and data should be within \pm 2 ps.

Consult the Versal Adaptive SoC GTYP Transceivers Architecture Manual (AM002) for further details.

For GTY/GTYP transceiver interfaces such as DisplayPort, SGMII, PCIe®, SATA, and USB3.0,refer to Versal ACAP GTY and GTYP Transceivers Architecture Manual (AM002). https://docs.xilinx.com/r/en-US/am002-versal-gty-transceivers/Transceiver-and-Tool-Overview

Versal ACAP SelectIO Resources Architecture Manual (AM010) https://docs.xilinx.com/r/en-US/am010-yersal-selectio/Overview

Appendix D: VPR-4616-SYS Default Login

The VPR-4616-SYS is loaded Ubuntu operating system, after you power on the system, the Ubuntu operating system screen will be appear as shown.

Default Login:

Username: **D773** Password: **1234**

Visit following link for latest Driver Download:

https://www.sapphiretech.com/en/commercial/edge-plus-vpr-4616-sys#Download